
大数据应用之双色球算奖平台总体设计数据规模估算篇
引子:什么才算大数据?
自从写了上一篇《大数据应用之双色球算奖平台总体设计大纲篇一》,受到许多园友的关注和指导,在此表示感谢,尤其是园友个人知识管理给出的一个评论,让我深思,原文如下“双色球算奖这么简单的活,也称大数据。先生:不是数据多,叫大数据。双色球算奖,用Oracle数据库的索引,1分钟内就算完。关键是人家不想这么快”。话不太好听,尤其是称我为先生那句,但却发人深思,是啊:到底什么是大数据呢?选择双色球算奖作为大数据应用的切入点是否合适呢?然后就是让我诧异的1分钟理论很是吓了我一跳的。
说一下自己的理解吧,大数据是指那些很大的数据集,大到传统的数据库软件工具已经无法采集、存储、管理和分析。大数据既有存储规模方面的考虑,同时也涉及到分析计算规模的考虑。之所以选择双色球算奖平台作为大数据应用的案例,也正是考虑到这两个方面的问题。其一,历史投注明细信息的存储,如果采用传统的关系型数据库,肯定是不合适,无论是分区还是分表,都无法解决根本问题。其二、当前投注规模的情况下,进行快速算奖,所要进行的计算规模肯定也不是一个传统方式能轻易解决的问题。
当然关于具体多大规模的数据才算大数据,目前为止尚未有一个官方的界定阈值的存在,规定超过多少算大数据,低于多少不算大数据的说法。既然没有标准,也就无所谓是与不是,见仁见智,不一而足。
一、概述业务规则
双色球奖项设置和兑奖规则如下所示:
“双色球”彩票以投注者所选单注投注号码(复式投注按所覆盖的单注计)与当期开出中奖号码相符的球色和个数确定中奖等级:
一等奖:7个号码相符(6个红色球号码和1个蓝色球号码)(红色球号码顺序不限,下同)
二等奖:6个红色球号码相符;
三等奖:5个红色球号码和1个蓝色球号码相符;
四等奖:5个红色球号码或4个红色球号码和1个蓝色球号码相符;
五等奖:4个红色球号码或3个红色球号码和1个蓝色球号码相符;
六等奖:1个蓝色球号码相符(有无红色球号码相符均可)。
二、数据对象分析
既然是数据规模的评估,我们要解决的首先就是数据对象的确认。针对双色球算奖平台,我们需要关注那些数据对象呢?按照矛盾论的观点,事物的矛盾分为主要矛盾和次要矛盾,其中主要矛盾起决定性作用。所以在这里我们只考虑双色球算奖平台涉及的最主要的数据对象,而不考虑其他细节问题。
数据对象主要包括以下几个方面:
(1)销量统计:包括全国、分省市、销售网点的销量汇总统计数据。
(2)中奖统计:包括全国、分省市、销售网点的各奖项的中奖注数汇总统计数据。
(3)开奖号码:包括每一期开奖号码信息。
(4)奖金信息:包括每一期次各奖项奖金多少的统计数据。
(5)选注明细:当前期次选注明细数据。
(6)选注历史明细:历史期次选注明细数据。
(7)中奖选注明细:当前期中奖选注明细数据。
(8)中奖选注历史明细:历史中奖选注明细数据。
如果从存储规模和计算规模两个维度分别考虑,针对销量统计、中奖统计和奖金信息,我们需要关注的是计算规模;针对选注明细、选注历史我们要关注的则是存储规模。
三、存储规模评估
3.1 数据结构
针对双色球算奖平台而言,所有需要存储的数据中,选注历史明细信息的存储是规模最大的,根据目前双色球每一期次的平均销量来看,需要存储的每一期次选注明细信息约为2亿条记录。每一选注需要存储的信息包括:站号、操作员、流水号、销售期、有效期、销售时间、金额、投注明细(多条)、开奖时间和附加码。具体如下图所示:
为简化我们的分析,我们将复式投注和胆拖投注明细拆分成单式投注进行存储,具体数据结构如下:
按照简化后的数据存储,单注明细需要的存储空间=35字节,每一期次需要存储的绝对数据规模=200000000*35/1024/1024=6675.7M。如果单从这个角度来看,数据存储规模还真的不算大。但是考虑到RDMS表的存储和访问,无论是采用分区,还是分表,能够实现的其实只是把数据塞进去,至于,读出来,如何读出来则将会是一个悲剧。不要告诉我用索引,用索引需要付出的代价是什么,我想有更多的人比我清楚。
3.2 测试环境
3.3 测试结果-无索引插入
3.4 数据库空间-1000w记录数据库空间
四、计算规模评估
这部分设计到具体采用的算法,但是无论采用何种算法,2亿次规模的数据遍历是必须的,之前园友提到的方法其实很好,根据开奖号码,设计中奖选注表,利用待兑奖数据进行组合ID比较,然后得出目标选注。然后进行奖项层次的细分,思路很好,可是有没有想到过2亿次乘以目标中奖选注表项个数的计算规模有是多少次呢。如果采用SQL的方式,时间呢,又需要多少的时间?有数据有真相,正在跑相关的测试案例。至少目前看到的结果,很不理想。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15