京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应用之双色球算奖平台总体设计数据规模估算篇
引子:什么才算大数据?
自从写了上一篇《大数据应用之双色球算奖平台总体设计大纲篇一》,受到许多园友的关注和指导,在此表示感谢,尤其是园友个人知识管理给出的一个评论,让我深思,原文如下“双色球算奖这么简单的活,也称大数据。先生:不是数据多,叫大数据。双色球算奖,用Oracle数据库的索引,1分钟内就算完。关键是人家不想这么快”。话不太好听,尤其是称我为先生那句,但却发人深思,是啊:到底什么是大数据呢?选择双色球算奖作为大数据应用的切入点是否合适呢?然后就是让我诧异的1分钟理论很是吓了我一跳的。
说一下自己的理解吧,大数据是指那些很大的数据集,大到传统的数据库软件工具已经无法采集、存储、管理和分析。大数据既有存储规模方面的考虑,同时也涉及到分析计算规模的考虑。之所以选择双色球算奖平台作为大数据应用的案例,也正是考虑到这两个方面的问题。其一,历史投注明细信息的存储,如果采用传统的关系型数据库,肯定是不合适,无论是分区还是分表,都无法解决根本问题。其二、当前投注规模的情况下,进行快速算奖,所要进行的计算规模肯定也不是一个传统方式能轻易解决的问题。
当然关于具体多大规模的数据才算大数据,目前为止尚未有一个官方的界定阈值的存在,规定超过多少算大数据,低于多少不算大数据的说法。既然没有标准,也就无所谓是与不是,见仁见智,不一而足。
一、概述业务规则
双色球奖项设置和兑奖规则如下所示:
“双色球”彩票以投注者所选单注投注号码(复式投注按所覆盖的单注计)与当期开出中奖号码相符的球色和个数确定中奖等级:
一等奖:7个号码相符(6个红色球号码和1个蓝色球号码)(红色球号码顺序不限,下同)
二等奖:6个红色球号码相符;
三等奖:5个红色球号码和1个蓝色球号码相符;
四等奖:5个红色球号码或4个红色球号码和1个蓝色球号码相符;
五等奖:4个红色球号码或3个红色球号码和1个蓝色球号码相符;
六等奖:1个蓝色球号码相符(有无红色球号码相符均可)。
二、数据对象分析
既然是数据规模的评估,我们要解决的首先就是数据对象的确认。针对双色球算奖平台,我们需要关注那些数据对象呢?按照矛盾论的观点,事物的矛盾分为主要矛盾和次要矛盾,其中主要矛盾起决定性作用。所以在这里我们只考虑双色球算奖平台涉及的最主要的数据对象,而不考虑其他细节问题。
数据对象主要包括以下几个方面:
(1)销量统计:包括全国、分省市、销售网点的销量汇总统计数据。
(2)中奖统计:包括全国、分省市、销售网点的各奖项的中奖注数汇总统计数据。
(3)开奖号码:包括每一期开奖号码信息。
(4)奖金信息:包括每一期次各奖项奖金多少的统计数据。
(5)选注明细:当前期次选注明细数据。
(6)选注历史明细:历史期次选注明细数据。
(7)中奖选注明细:当前期中奖选注明细数据。
(8)中奖选注历史明细:历史中奖选注明细数据。
如果从存储规模和计算规模两个维度分别考虑,针对销量统计、中奖统计和奖金信息,我们需要关注的是计算规模;针对选注明细、选注历史我们要关注的则是存储规模。
三、存储规模评估
3.1 数据结构
针对双色球算奖平台而言,所有需要存储的数据中,选注历史明细信息的存储是规模最大的,根据目前双色球每一期次的平均销量来看,需要存储的每一期次选注明细信息约为2亿条记录。每一选注需要存储的信息包括:站号、操作员、流水号、销售期、有效期、销售时间、金额、投注明细(多条)、开奖时间和附加码。具体如下图所示:
为简化我们的分析,我们将复式投注和胆拖投注明细拆分成单式投注进行存储,具体数据结构如下:
按照简化后的数据存储,单注明细需要的存储空间=35字节,每一期次需要存储的绝对数据规模=200000000*35/1024/1024=6675.7M。如果单从这个角度来看,数据存储规模还真的不算大。但是考虑到RDMS表的存储和访问,无论是采用分区,还是分表,能够实现的其实只是把数据塞进去,至于,读出来,如何读出来则将会是一个悲剧。不要告诉我用索引,用索引需要付出的代价是什么,我想有更多的人比我清楚。
3.2 测试环境
3.3 测试结果-无索引插入
3.4 数据库空间-1000w记录数据库空间
四、计算规模评估
这部分设计到具体采用的算法,但是无论采用何种算法,2亿次规模的数据遍历是必须的,之前园友提到的方法其实很好,根据开奖号码,设计中奖选注表,利用待兑奖数据进行组合ID比较,然后得出目标选注。然后进行奖项层次的细分,思路很好,可是有没有想到过2亿次乘以目标中奖选注表项个数的计算规模有是多少次呢。如果采用SQL的方式,时间呢,又需要多少的时间?有数据有真相,正在跑相关的测试案例。至少目前看到的结果,很不理想。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27