
沪指天量爆表之后何去何从 大数据图解后市走势
昨日,沪市量能首破万亿大关,两市成交更是突破1.8万亿,不仅创出世界资本市场最大成交量,更导致上交所行情系统遭遇了史无前例的爆表尴尬,成交停留在了10000亿。
昨日盘中巨震勾起了市场人士对“5·30”大跌走势的回忆。那么,这次下跌是不是又会重演“5·30”的走势呢?
川财证券分析师吴家麒通过对比分析“5·30”以及目前的市场数据发现,从投资者开户统计代表的情绪来看,目前和2005~2007年牛市非常类似:股票和基金新开户账户数量不断创新高;从投资者心理分析,股民先于基民进入市场,2005~2007牛市中的数据也验证了这一点,股票账户开户数领先基金账户开户数;从本轮的数据来看,股票账户开户数领先基金账户开户数。
从基民认购基金的情绪来看,增量基金类似2005~2007年不断规模增大,存量基金规模会远小于2007年。新基金发行总规模和单只基金发行平均规模都在不断的上升中,2007年单只基金发行平均规模超过100亿元,现在为40亿元。基金十大重仓股的市值规模和基金平均规模高度一致,原因是基金规模决定了投资股票的市值风格。由于基金个数已非2007年能比,因此从整体的基金平均规模不可能再上升到当时的130亿元的规模。
从创新高股票占比来看,之后的调整一定是较大的指数调整。2015年3月和4月,创历史新高个股的占比都超过了40%。从历史上来看类似的情况只发生过6次,持续时间最长为3个月。每次发生以后都迎来了一个指数超过20%以上的巨幅调整,但是未必这个信号就是牛市终结的信号。
从风格上来看,本轮发生的风格转化和事件与2005~2007年牛市非常类似。B股暴涨以至于集体涨停在2007年5月也发生过。金融股为代表的大盘股暴涨在2006年12月也发生过。本轮牛市经历过的大小盘风格转变和2005~2007年牛市中的前半段非常类似。2005~2007牛市中两个值得注意的信号:“5·30”之前B股先于A股指数见顶,第二次大盘股暴涨的2007年10月即是大盘到顶的时间。
从龙头股表现来看,目前可能还有上涨空间。2005~2007年牛市龙头个股板块是券商、有色和船舶,本轮牛市龙头个股板块是互联网+金融和移动互联网。市值风格来看龙头股的市值都在100亿~500亿元之间。从绝对涨幅来看,本轮龙头股上涨并不及上轮龙头股的上涨。“5·30”之后在绝大多数个股下跌的情况下,几乎所有的龙头股都获得了绝对收益。与之前的认识不同,龙头股顶部时间和大盘的顶部时间并没有明确的一致关系。
那么天量之后,市场如何走?海通证券分析了历史天量图之后认为,牛市中,放量大跌并不一定意味着市场会马上见顶。目前市场趋势还未坏,宏观政策偏暖未变,但指数上涨千点后市场波动会加大,投资环境从3月来的“大胆跑”阶段进入“悠着走”阶段,投资者应密切跟踪政策动向。
牛市中的天量图
回顾05-07年、08年底-09年以及本轮牛市,出现大幅放量下跌的有如下几次:
(数据来源:海通策略荀玉根团队)
大数据图解:天量之后“悠着走”
①牛市中,放量大跌并不一定意味着市场会马上见顶,历史上曾多次出现放量大跌后再缩量创新高。
②从宏观政策和股市政策背景看,本次放量下跌与14年12月9日类似,都是宏观政策暖调但股市政策微调。12月9日证监会进证券公司检查两融业务,本次证监会要求券商两融不得参与场外配资和伞形信托。
③市场趋势还未坏,宏观政策偏暖未变,两融新政暂不代表全面调控股市,20日新华社发表“经济转型关键期需要慢牛长牛支持”文章,增量资金入市继续。但是相比3月初,管理层对股市态度微妙变化、资金蜂拥入市后市场热度已大幅上升,指数上涨千点后市场波动会加大,投资环境从3月来的“大胆跑”阶段进入“悠着走”阶段,密切跟踪政策动向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04