京公网安备 11010802034615号
经营许可证编号:京B2-20210330
沪指天量爆表之后何去何从 大数据图解后市走势
昨日,沪市量能首破万亿大关,两市成交更是突破1.8万亿,不仅创出世界资本市场最大成交量,更导致上交所行情系统遭遇了史无前例的爆表尴尬,成交停留在了10000亿。
昨日盘中巨震勾起了市场人士对“5·30”大跌走势的回忆。那么,这次下跌是不是又会重演“5·30”的走势呢?
川财证券分析师吴家麒通过对比分析“5·30”以及目前的市场数据发现,从投资者开户统计代表的情绪来看,目前和2005~2007年牛市非常类似:股票和基金新开户账户数量不断创新高;从投资者心理分析,股民先于基民进入市场,2005~2007牛市中的数据也验证了这一点,股票账户开户数领先基金账户开户数;从本轮的数据来看,股票账户开户数领先基金账户开户数。
从基民认购基金的情绪来看,增量基金类似2005~2007年不断规模增大,存量基金规模会远小于2007年。新基金发行总规模和单只基金发行平均规模都在不断的上升中,2007年单只基金发行平均规模超过100亿元,现在为40亿元。基金十大重仓股的市值规模和基金平均规模高度一致,原因是基金规模决定了投资股票的市值风格。由于基金个数已非2007年能比,因此从整体的基金平均规模不可能再上升到当时的130亿元的规模。
从创新高股票占比来看,之后的调整一定是较大的指数调整。2015年3月和4月,创历史新高个股的占比都超过了40%。从历史上来看类似的情况只发生过6次,持续时间最长为3个月。每次发生以后都迎来了一个指数超过20%以上的巨幅调整,但是未必这个信号就是牛市终结的信号。
从风格上来看,本轮发生的风格转化和事件与2005~2007年牛市非常类似。B股暴涨以至于集体涨停在2007年5月也发生过。金融股为代表的大盘股暴涨在2006年12月也发生过。本轮牛市经历过的大小盘风格转变和2005~2007年牛市中的前半段非常类似。2005~2007牛市中两个值得注意的信号:“5·30”之前B股先于A股指数见顶,第二次大盘股暴涨的2007年10月即是大盘到顶的时间。
从龙头股表现来看,目前可能还有上涨空间。2005~2007年牛市龙头个股板块是券商、有色和船舶,本轮牛市龙头个股板块是互联网+金融和移动互联网。市值风格来看龙头股的市值都在100亿~500亿元之间。从绝对涨幅来看,本轮龙头股上涨并不及上轮龙头股的上涨。“5·30”之后在绝大多数个股下跌的情况下,几乎所有的龙头股都获得了绝对收益。与之前的认识不同,龙头股顶部时间和大盘的顶部时间并没有明确的一致关系。
那么天量之后,市场如何走?海通证券分析了历史天量图之后认为,牛市中,放量大跌并不一定意味着市场会马上见顶。目前市场趋势还未坏,宏观政策偏暖未变,但指数上涨千点后市场波动会加大,投资环境从3月来的“大胆跑”阶段进入“悠着走”阶段,投资者应密切跟踪政策动向。
牛市中的天量图
回顾05-07年、08年底-09年以及本轮牛市,出现大幅放量下跌的有如下几次:
(数据来源:海通策略荀玉根团队)
大数据图解:天量之后“悠着走”
①牛市中,放量大跌并不一定意味着市场会马上见顶,历史上曾多次出现放量大跌后再缩量创新高。
②从宏观政策和股市政策背景看,本次放量下跌与14年12月9日类似,都是宏观政策暖调但股市政策微调。12月9日证监会进证券公司检查两融业务,本次证监会要求券商两融不得参与场外配资和伞形信托。
③市场趋势还未坏,宏观政策偏暖未变,两融新政暂不代表全面调控股市,20日新华社发表“经济转型关键期需要慢牛长牛支持”文章,增量资金入市继续。但是相比3月初,管理层对股市态度微妙变化、资金蜂拥入市后市场热度已大幅上升,指数上涨千点后市场波动会加大,投资环境从3月来的“大胆跑”阶段进入“悠着走”阶段,密切跟踪政策动向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01