
软件正在统治世界。而软件的核心则是算法。算法千千万万,又有哪些算法属于“皇冠上的珍珠”呢?Marcos Otero 给出了他的看法。
通俗而言,算法是一个定义明确的计算过程,可以一些值或一组值作为输入并产生一些值或一组值作为输出。因此算法就是将输入转为输出的一系列计算步骤。
—Thomas H. Cormen,Chales E. Leiserson,算法入门第三版
简而言之,算法就是可完成特定任务的一系列步骤,它应该具备三大特征:
1、有限
2、指令明确
3、有效
以下是 Marcos Otero 推荐的十大算法:
最好的排序算法跟需求密切相关,很难评判。但是从使用上说,这三种的使用频率更高。
归并排序由冯•诺依曼于 1945 年发明。这是一种基于比较的排序算法,采用分而治之的办法解决问题,其阶是 O(n^2)。
快速排序可采用原地分割方法,也可采用分而治之算法。这不是一种稳定的排序算法,但对于基于 RAM(内存)的数组排序来说非常有效。
堆排序采用优先级队列来减少数据中的搜索时间。该算法也是原地算法,并非稳定排序。
这些排序算法相对于以前的冒泡排序算法等有了巨大改进,实际上我们今天的数据挖掘、人工智能、链接分析及包括 web 在内的大多数计算工具都要感谢它们。
我们的整个数字世界都使用这两个简单但非常强大的算法,其作用是将信号从时域转为频域或者反之。实际上,你看得到这篇文章得感谢这些算法。
互联网、你的 WiFi、智能手机、电话、计算机、路由器、卫星,几乎所有内置有计算机的东西都会以各种方式使用这两算法。如果不研究这些算法,你就拿不到电子、计算或通信方面的学位。
3、迪杰斯特拉(Dijkstra)算法
Dijkstra是一种图谱搜索算法。许多问题都可以建模为图谱,然后利用 Dijkstra 寻找两个节点之间的最短路径。如果没有 Dijkstra 算法,互联网的运营效率必将大大降低。虽然今天我们已经有了更好的寻找最短路径的解决方案,但出于稳定性的要求,Dijkstra 算法仍然被很多系统使用。
如果没有密码术和网络安全,互联网就不会像今天一样重要,因为电子商务和电子交易需要这些技术来确保交易安全。而RSA算法是最重要的密码学算法之一。该算法由同名公司的创始人(Ron Rivest、Adi Shamir 和 Leonard Adleman)开发,它让密码学普及到了千家万户并奠定了密码术的应用基础。RSA 要解决的问题既简单又复杂:如何在独立平台与最终用户之间共享公钥。其解决方案是加密。RSA 加密的基础是一个十分简单的数论事实:将两个大素数相乘十分容易,但是想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。但在分布式计算和量子计算机理论日趋成熟的今天,RSA 加密安全性受到了挑战。
这个实际上并不算是算法,而是由美国国家标准技术研究所开发的一系列密码杂凑函数。但是这系列函数是全世界运作的基石。应用商店,电子邮件、反病毒、浏览器等在使用SHA系列函数,SHA 函数可用来确定下载的东西是否自己想要的东西,还是说遭遇了中间人攻击或钓鱼攻击。
这是一个在计算领域使用频繁的数学算法。如果没有这一算法,密码术就会变得不安全得多。整数因子分解是用来将一个合数分解成一系列素因子的一系列步骤。整数因子分解可被视为是 FNP 问题(FNP 是难以解决的典型 NP 问题的扩展)。
许多密码协议均基于难以分解的大型合数或相关问题。比方说前面提到的 RSA 问题。如果有算法能够有效分解任意数字,那么就会使得基于 RSA 的公钥密码系统陷入不安全的境地。
而量子计算的诞生则令此问题的解决变得容易,从而也打开了一个全新的领域,可利用量子世界的属性来令系统更加安全。
在互联网时代,不同实体间关系的分析至关重要。从搜索引擎和社交网络到营销分析工具,每个人都想找出互联网的真正结构。
链接分析无疑是公众对算法的最大困惑与迷思之一。其问题在于进行链接分析有不同的方式,而增加一些特征就会令每一算法略有不同(从而使得算法受到专利保护),但基本上这些算法都是类似的。
链接分析算法首先由 Gabriel Pinski 和 Francis Narin 在 1976 年发明。其背后的思路很简单,即把图谱以矩阵的形式表示,从而转为特征值问题,而特征值有助于了解图谱结构及每个节点的相对重要性。
Google 的 PageRank,Facebook 展示新闻源,Google+,Facebook 朋友推荐,LinkedIn 工作及联系人推荐,Netflix 与 Hulu 的电影推荐,YouTube 视频推荐等均使用了链接分析算法。虽然每个都有不同的目标和参数,但其背后的数学是一样的。
尽管 Google 似乎是利用此类算法的第一家公司,但是实际上百度创始人李彦宏在 Google 诞生 2 两年前做的搜索引擎“RankDex”已经利用这种思路来进行搜索排名了。
如果你用过飞机、汽车、微型服务或手机网络,如果你在工厂呆过或者见过机器人,那么你已经见识过这一PID算法的作用了。
该算法利用了控制回路机制来让期望输出信号与实际输出信号之间的错误降到最小。只要需要信号处理或需要电子系统来控制自动化的机械、水力或热力系统就要用到它。
因此可以说如果没有这一算法,人类的现代文明将不复存在。
数据压缩算法无疑是非常重要的,因为几乎在所有的结构中都要用到。除了最明显的压缩文档以外,网页下载时也会压缩,视频游戏、视频、音乐、数据存储、云计算、数据库等等也都要使用压缩算法。可以说几乎所有应用都要使用压缩算法。压缩算法令系统更有效成本更低,但是要想确定哪一个最重要却很困难,因为应用不同,使用的压缩算法从 zip 到 mp3、JPEG 或 MPEG-2 各异。
很多应用都需要随机数。像 interlink connection,密码系统、视频游戏、人工智能、优化、问题的初始条件,金融等都需要生成随机数。但实际上目前我们并没有“真正”的随机数生成器,尽管有一些伪随机数生成器也是非常有效的。
当然,十大算法也可能给有凑数之嫌,审视的角度不同对算法的重要性看法也会很不一样,如果你认为这一榜单有错漏的地方,不妨在评论中贡献你的意见。cda数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29