
大数据成“互联网+”发动机 机构分四路掘金
经过多年的积累,大数据已经成为网络公司最重要的资产,通过对大数据资源的开发,“互联网+”才能水到渠成。而从机构对大数据的投资布局看,它们已经兵分多路,对占据大数据资源的诸多上市公司进行了前瞻性的布局
进入2015年以来,新兴产业概念股一飞冲天,尤其是在今年全国两会上热议的“互联网+”概念推动下,代表新兴产业的创业板指年内最高涨幅超过75%。在业内人士看来, 经过多年的积累,大数据已经成为网络公司最重要的资产,通过对大数据资源的开发,“互联网+”才能水到渠成。而从机构对大数据的投资布局看,已经兵分多路,对占据大数据资源的诸多上市公司进行了前瞻性的布局。
大数据挖掘将造就千亿级以上市场
全国两会上热议的“互联网+”战略,从去年余额宝的推出就开始受到了关注。通过对用户行为进行数据分析,进行投资错配博取高收益,让余额宝一鸣惊人,并掀起席卷市场的货币基金浪潮,由此引爆的固定收益类产品示范效应,点燃了基金公司开发大数据权益类产品的热情。大数据概念的开发,也受到市场更多的关注。
在大数据开发热潮引领下,互联网与传统产业的深度融合带来巨大的市场,不少上市公司脱离原有板块,进行跨界、转型以及融合,形成新的业态、估值体系。在业内人士看来,网络开放、平等、透明度高等特性,让信息及数据在工业社会中被压抑的巨大潜力爆发出来,转化成巨大生产力,成为社会财富增长的新源泉,改变生活和生产,从而带来大数据的黄金时代。
事实上,从大数据目前开发情况看,已经开始向各个行业扩散与渗透,通过大数据,创造了新的需求及预测未来,进行资源合理分配,最终使社会效率获得提升。余额宝研究用户及存款提款行为,通过大数据管理1亿用户的流动性;苏宁云商提出并实践O2O模式,通过大数据驱动的C2B反向定制、精准会员营销等创新运营手段,引发供应链变革;商业保险、移动医疗企业的崛起,正在通过市场的力量加速医疗大数据形成闭环,移动医疗行业蓬勃发展。
从政策层面看,不少地方政府借助网络巨头积累的大数据,提升城市管理水平。近日腾讯就与上海市政府签署了相关协议,通过腾讯的微信等平台,进行更为有效的管理。多地政府也在通过信息服务平台建设,对经济调节、市场监管、社会管理、公共服务进行改进。
沪上某基金公司研究员表示,目前所有的网络公司本质上已经是大数据公司,大数据已经成为网络公司最核心的资产,未来大数据的价值挖掘及变现将会得到充分利用,这将造就千亿级以上的市场,相应的也会诞生大量的投资机会。
机构重兵布局大数据
从机构对大数据的投资情况看,已经兵分几路开展布局。在当前最重要的大数据资源中,主要包括四个方面:首先是政府部门积累的大数据,不仅包括国家经济社会等众多领域的核心真实信息,也包括每一个人的个人身份信息,还有涉及交通、公安、行业监管等各部门的数据,这些数据如果得到开发,都将是掘之不尽的金矿。
从机构布局看,拥有纳税信息的航天信息,在2014年底吸引186家机构抱团入驻;为国家有关部门提供计算机信息服务的太极股份,吸引了88家机构密集布局,为人力资源和社会保障提供自助服务一体机服务的易联众,吸引了15家机构持有等。
第二个掌握大量数据的是金融部门。金融部门掌握了国计民生的所有金融交易数据,如果上述数据得到有效的开发,空间难以想象。在沪上某基金公司投资总监看来,银行占有巨大的资源,如果这些资源得到充分开发,银行的估值体系将得到很大提升,“但从目前来看,银行传统业务盈利非常容易,还没有动力去进行充分开发,如果把银行掌握的数据交给其他上市公司,资本市场绝对会给非常高的估值。”
第三个重要的大数据资源来源于电信运营商。中信建设分析师武超则认为,电信运营商通过多年的经营,积累了庞大的数据资源。随着语音业务的逐渐降价,数据流量经营将成为运营商的主要方向,运营商拥有任何移动互联网公司都无法比拟的海量数据,由语音经营走向流量经营进而进入大数据运营已成为大势所趋,空间巨大。
从机构布局看,从事移动转售业务并发力移动互联的天音控股,被37家机构同时持有;在电信网络管理领域有优势的亿阳信通,也被31家机构同时持有,其中不少基金为去年四季度新近入驻。
最后一个大数据资源是商业数据,不管是阿里巴巴平台上的交易数据,还是上海钢联、生意宝等公司上的交易数据,都存在其他领域变现的可能,资本市场也正是出于多途径变现的前景,给予了很高的估值。数据显示,目前有多达69家机构持有上海钢联,持有怡亚通的机构也高达61家,而与阿里巴巴等平台合作的公司都被赋予了较高的估值。
在业内人士看来,在互联网推动社会发展一日千里的情况下,通过大数据创造需求及预测未来,进行资源合理分配,最终使社会效率获得提升,本质上也是反映了资本市场炒作逻辑,在构建“财、物、信息”富有价值的“关系与关联”中,去进行二级市场的投资。例如上海钢联,通过公司积累的大数据资源,切入供应链金融后受到追捧,做煤炭贸易的瑞茂通引入大数据开发后,同样可以开发上下游资源,向供应链领域进行拓展。
事实上,基金公司也在开发大数据资源,进行有针对性的产品开发。目前南方基金与百度与广发基金、博时基金和蚂蚁金服等都已经开发或者正在开发相应的基金产品,而天弘基金则表示,将在大数据投研领域引领行业潮流,早在去年就成立了数据研究部,打造数据研究平台,开启了资管投资2.0时代。今年2月,天弘基金还发行了一只天弘云端生活优选基金,将大数据技术引入投研,提升投研的效率。文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30