京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据离盈利还有多远_数据分析师培训
在多数行业,大量的数据仍因缺乏可运营的商业模式而“沉睡”,无法盈利成为大数据产业化发展的瓶颈——
“未来早已来到我们身边,只是分布还不均匀。”这是清华大学副校长杨斌对大数据领域现状的概括,他认为大数据已在我们身边,而非仅是对未来的幻想。
在4月10日至11日由清华大学、贵州省经信委等单位主办的2014中国“云上贵州”大数据商业模式大赛总决赛上,的确涌现了很多实用的大数据应用,获奖者们还分享了贵州省政府所提供的2000万元扶持资金。然而在多数行业,大量的数据仍因缺乏可运营的商业模式而“沉睡”,无法盈利成为大数据产业化发展的瓶颈,大数据离“变现”究竟还有多远?
商业模式不清晰、难“变现”
农业、建筑、旅游、金融、健康、公共服务……涵盖诸多领域的大数据应用在“云上贵州”大数据商业模式大赛上层出不穷。其中,获得一等奖的“东方祥云”项目设想为全国15万座水电站、水库提供免费来水预报,帮助合理调度用水,据估算可为这些单位信息化改革节省90%的成本;而“淘数”则设想建立网上数据商城,出售具有商业价值的数据;“蜂能”则试图通过智能用电终端采集设备用电数据,进行节电和需求优化管理,预计可实现节约用电10%~20%。
这些大数据的“新玩法”可谓超乎想象,但大数据的利用价值远不止如此。以中国公路物流行业为例,其市场价值已达亿万级,而90%以上运力为个体车主,空驶率达30%以上,集约程度较低,浪费了物流资源。如果依托大数据技术开发出集中运力的手机APP,就可提高配置效率,降低运输成本。然而,目前这一领域的手机APP多达200款,但能真正实现盈利的寥寥无几。
能持续盈利才能发展壮大成产业,这是大数据亟须“变现”的原因。但在大多数行业,大数据还没有找到适合的位置,“变现”难是大数据领域普遍存在的焦虑。“我们最关注盈利模式清晰,易于操作的大数据应用,但这恰好也是目前比较欠缺的。”赛伯乐投资公司董事长朱敏说。
数据壁垒制约产业化进程
在“云上贵州”大数据商业模式大赛上,贵州省向参赛者开放了智能交通、智慧旅游、电子商务、电子政务、食品安全、工业和环保7个领域的真实数据,成为我国首个开放政府数据的省份,这些真实的数据不仅吸引了众多抱有创业梦想的参赛者,也吸引了百度和阿里巴巴这样的互联网“巨鳄”。
“丰富的数据资源是大数据产业发展的前提,也是贵州这次大赛最吸引人的地方。”阿里巴巴副总裁涂子沛说,他认为贵州省政府对大数据的开放,是“拥抱了未来”。
“投资大数据领域所要考察的关键因素包括对行业的渗透特性、创业者对大数据的理解能力、行业小气候、商业模式实现的难易程度等。”清华大学数据科学研究院执行副院长韩亦舜说,这些都需要数量巨大且真实的原始数据作为支撑。
然而,由于经济、观念等原因,我国政府、企业和行业的信息化建设往往缺少统一规划和科学论证,各部门所拥有的信息缺乏统一的标准,形成了众多“信息孤岛”,而且受行政垄断和商业利益所限,数据开放程度低、共享难,也是目前大数据产业化发展公认的最大障碍。
需营造适宜生态环境
大数据的浪潮已经影响到了世界上很多企业。根据科尔尼咨询公司的研究,在过去两年中有超过45%的公司实施了商业智能或是大数据计划。在中国,围绕“数据财富”的鏖战已经打响——广州的“天云计划”,哈尔滨的“中国云谷”,鄂尔多斯的“草原的云谷”,北京的“祥云工程”,目前全国有20多个地区都开展了围绕大数据的云产业部署。
工信部软件服务业司司长陈伟认为,贵州所举办的“云上贵州”大数据商业模式大赛略显不同,“它推动了大数据从学术研究向商业实践的转变,为大数据的商业进程开了一扇窗,是大数据产业发展的正能量”。
尽管如此,大数据要“变现”,仍需要多方努力营造更加适宜的生态环境。
“首先要改变对数据隐私权的认识,隐私边界的界定是动态过程,绝对的隐私权保护体现的是世界静止观。”杨斌说,而极端的隐私保护会“以一种较为粗暴的方式”制约产业的发展。
他还呼吁企业开放其大数据资源,“如果中国银联愿意开放数据库,哪怕只是5天的数据片段,其开发结果可能是诞生一个远离金融但对民生产生重大影响的应用。”在他看来,大数据商业模式是难以预设方向的,而这才是包容智慧的力量。
中国工程院院士、国家信息化专家组咨询委员会委员邬贺铨认为,政府数据资源在安全前提下逐步有序适当开放,也有利于提升公众服务和社会管理,营造创新环境和释放商业机会,市民、企业和政府都将从中受益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22