
无论是政治、经济、文学、历史、社会、文化,还是数理、化工、医农、交通、地理,各行各业的大数据,或宏观或微观的任何价值发现,无不借助于大数据聚类分析的结果。因此,数据分析和挖掘的首要问题是聚类,这种聚类是跨学科、跨领域、跨媒体的。大数据聚类是数据密集型科学的基础性、普遍性问题。
李德毅以汽车保险为例,物联网时代,当汽车成为轮式机器人,成为大数据发生器以后,就是一个大数据发生体。每一次驾驶,每一次维修,每一次行驶,甚至每一次刹车,都会记录在案。利用大数据聚类,保险公司可对一个车况好、驾驶习惯好、常走线路事故率低、不勤开车的特定客户,给予更大的优惠,而对风险太高的客户,即使他报高价,也有可能拒绝,总之能够给出包括保险费支付方式在内的个性化解决方案,这就颠覆了保险公司的传统商业模式。这就是大数据聚类成为保险公司核心竞争力的原因,而大数据聚类也将成为很多行业的核心竞争力。
李德毅同时提醒,通过大数据聚类即时发现价值,要充分认识大数据中的不确定性和价值的隐蔽性,要跨界创新、跨界构建基于统计的可变视角和可变尺度的全新发现状态空间,同时,用大数据的规模来保证发现价值的精准性,因为习惯性认知或传统聚类工具难有创新。
机器人时代真的来了
如何认识机器人?李德毅指出,智能机器人是集新材料、新工艺、新能源、机械、电子、移动通信、全球定位导航、移动互联网、云计算、大数据、自动化、人工智能、认知科学、乃至人文艺术等多个学科、多种技术于一身的人造精灵,是人联网、物联网不可或缺的端设备,是人类社会走向智慧生活的重要伴侣,将引发人人联网、物物联网的崭新形态,也将改变人类的生产活动、经济活动和社会生活。
李德毅认为,机器人既使用大数据也产生大数据,既是大数据的产物,也是大数据的推动者。机器人是大数据认知的典型代表,而在目前,无论是搬运、码垛、研磨、抛光、挖掘等灰头土脸的工业机器人,还是微电子产品生产线上精细灵巧的机器人,机器人在我们的生产生活中已经随处可见。
李德毅举例,以达芬奇机器人为代表的多手臂、可遥控的微创手术工具,在从泌尿外科到心脏病的一系列手术中成功使用,手术时间短,痛苦少,费用低,大大激发了人们去研发柔软、小巧、安全和智能的医疗机器人。而在不远的将来,还将有更多工业机器人、农业机器人、医疗与健康机器人、服务机器人、太空机器人、国防机器人出现,可以说机器人时代真的来了。
李德毅说,机器人革命是世界性的、时代性的。机器人换人首先不是换掉理发师之类的劳动者,而可能是产业工人、医生、服务员,甚至士兵,他们将升级转型成为机器人的创造者和使用者,成为懂得集成、维修、管理机器人的专业人才。跨界渗透和跨界创新诞生的智能制造也是我国正在抓住的一次历史机遇。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04