
中国工程院院士李德毅:聚类成大数据认知突破口
4月9日,由工业和信息化部、深圳市人民政府主办,中国电子信息产业发展研究院、中国电子报社协办的新一代信息技术产业发展高峰论坛在深圳会展中心举行。中国工程院院士李德毅在发言中指出,大数据作为网络时代的一种客观存在,是网络时代人类社会的重要资产,尽管目前对于大数据的认知存在挑战,但聚 类将会成为大数据认知的突破口。
大数据用传统工具
难以认知
李德毅表示,大数据标志着一个新时代的到来,这个时代的特征不只是追求丰富的物质资源,也不只是无所不在的互联网带来的方便的多样化信息服务,同时还包含区别于物质的数据资源的价值发现和价值转换,以及由大数据带来的精神和文化方面的崭新现象。
李德毅进一步指出,大数据来源于人类的测量、记录和分析世界的渴望和无尽的追求。随着信息技术,尤其是传感器、通信、计算机和互联网技术的迅猛发展和广泛应用,人类获取数据的手段越来越多,速度大大加快、成本急剧降低,层次和尺度更为精细,揭示自然现象和社会现象更加深刻,人联网和物联网又使得人人物物都成为数据源,这样一来,大数据将成为网络时代人类社会的重要资产。
在李德毅看来,大数据本身既不是科学,也不是技术。它反映的是网络时代的一种客观存在,各行各业的大数据,规模从TB到PB到EB到ZB,都是以3个数量级的阶梯迅速增长,是用传统工具难以认知的、具有更大挑战的数据。
在数据密集型的网络时代,任何传统的“学科”或“行业”的公理、原理和定理组合而成的语境,遇到“互联网+”的挑战,这样一来,“学科”和“行业”拓展成为交叉学科或者“四不像”行业,是“大数据,小模型、小定律、交叉学科”的时代,模型和程序要围绕数据转。
李德毅认为,大数据时代数据量巨大、价值密度低,实时在线,多源异构、混杂敏捷、呈现复杂多样的数据集合,需要跨媒体关联,难以在单机计算架构上聚类,必须依托云计算,进行并行/分布式处理。
聚类成为
发现大数据价值第一步
李德毅在演讲中指出,尽管大数据在认知上具有挑战性,但是聚类将会成为大数据认知的突破口。“物以类聚,人以群分”,是人类几千年来认识世界和社会的基本能力,是从大数据中发现价值必须面对的一个普遍性、基础性问题,是认知科学作为“学科的学科”要解决的首要问题。认知科学要有所突破,首先要在大数据聚类上突破。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23