京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据畅通需打破壁垒早立法_数据分析师培训
大数据时代,人人都是大数据的使用者,人人也是大数据的制造者,人人离不开大数据。但是,大数据从哪获取?大数据是否安全?使用这些数据是否涉嫌侵害隐私?大数据是否有效?等等,上述系列问题,已经成为我国迈入大数据时代绕不过去的坎。挑战伴随着机遇,携手来临。
打破壁垒提上日程
谁拥有大数据,谁就拥有了未来。因此,含金量越来越高的大数据,受到市场各方尤其是金融业的高度关注。
证券业有中证登,银行业有银联,保险业早在2014年成立了中国保信。目的是为了加强行业公共基础设施建设,全面提升保险经营管理的信息化水平。大数据时代,保险试水信息航母平台建设。
中国保信公司常务副总裁罗胜在月谈上表示,如果要利用大数据,一定要有消除社会上的数据门槛和数据障碍,打破数据壁垒。但在这方面做的确实不好。
基金公司在量化管理上,数据的应用非常广泛。但在国寿安保基金经理李康看来,目前大数据的应用只是刚起步,因为有很多数据,金融机构是难以得到的。
与会者认为,由于数据本身的封闭、数据的不开放,当然,也不排除在数据应用本身、技术提取方式方法上的问题,使得目前我国数据的共享程度不够。
在目前环境下,要解决数据间壁垒问题,确实没有太好的办法。中科院金融科技中心首席科学家兼副主任刘世平的方式比较实用。他透露,“我们在每个地方基本上都是找地方一把手,否则的话,目前很难打破壁垒”。
优股网创始人卢常福说的很干脆,“就是要开放和降低行政门槛,目前,像金融业是比较严格的。”火热的资本市场,越来越庞大的数据体系,对于证券数据的分析者而言,迫切需要放开数据的最终出口。当然,这可能涉及牌照管理等系列监管问题。
其实,行政管制现在比较严格的地方,在行业的商业模式以及发展空间,都会受制于原有管制。需要大量的新生力量进入,带来新的活力。因此,一个行业要健康发展,一定是流动的、开放的。
人们对于新崛起的大数据,爱戴之余,如何商业化,商业化到什么程度,心里都没谱。正如罗胜所言,数据的使用和应用,商业化肯定是一个趋势。但要把商业化和过渡商业化、商业化应用和非商业化应用区别开。
应为大数据立法做准备
新三板上市公司北京精耕天下董事长姚世忠举例称,因为税务的数据和银行的数据存在一定差距,能否分别获取相关数据,通过大数据公司,精准服务客户。
实际上,姚世忠提出了一个很敏感的问题。即,在哪种情况下哪种数据是可用的?一家做某地税务数据的公司,并不表示这家公司拥有数据本身和数据的使用权。这涉及数据的安全性、数据的隐私性、数据的可得性问题,以及数据的可用性问题。
“哪些数据是可用的,哪些数据是可得的?获取数据的方式方法是不是合理、合法、合规,这个是大数据时代一个非常重要的议题”,刘世平点评说。
显然,大数据这么重要的领域,立法是肯定刻不容缓的。
罗胜也认为,现在国家强调依法治国,在大数据领域制定相关法律,用法律维护数据的严肃。
除了要从根子上解决立法问题外,还需要走出目前认识上的误区。即大不等于多,大数据时代,应该更加强调数据的有效性。也就是说,不要为了迎合大数据而过度滥用大数据,规避进入大数据的误区。
积木盒子风险控制副总裁谢群认为,如何权衡在有限的资源、数据和时间里,得到一个最有效的决策,这是大数据时代带来的一些挑战,而公司目前已经迈出了非常有益的第一步。
李康也因为,数据本身的有效性是值得思考的。大数据时代,不在于数据的多少,因为这是相对概念。关键问题是数据本身能不能对这个事物本身进行准确的描述,且能描述其他内在本质。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11