京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据“识人”有绝招 网购记录也能攒信用_数据分析师
没有信用卡、没有贷款记录、没有央行个人征信系统里的任何相关信息,只要把自己的网上消费记录、话费详单等信息上传到一款手机APP上,你就有可能在10分钟之内获得几万元的贷款。看似天方夜谭的生活场景,金融大数据就能帮你实现。
网购记录助“草根”贷款
“对不起,您的情况,没有办法办理贷款。”想要贷款2万元做点小生意时,“85后”男孩崔浩遭到了银行的拒绝。
崔浩每月都有四五千元的固定收入。可他却没有信用卡、没有工资卡,在工地上打零工的他,所有工资都是以现金形式拿到手。
除了平日里吃饭、交房租,他所有的开销几乎都在网购中完成。惟一能够证明他手中有稳定现金流动的痕迹,就是一份稳定的网购消费记录。但这样的记录,银行现在还没法承认。
近日,通过一个名叫“信用钱包”的APP,崔浩却成功地从一家网贷平台拿到了贷款。
“人们的信用可以通过很多方式评估,我们的作用就是通过大数据分析和机器学习等技术,帮用户把这些零碎的信息数据收集和分析,让过去没法‘量化’的信用受到重视,为用户增信。”“信用钱包”研发企业、量化派创始人周灏说。
在“信用钱包”注册登录进入主页后,用户可以把淘宝消费账号、话费详单查询账号、教育信息查询账号等信息输入,并随即进入贷款申请页面。填入申请贷款额度、用途、时间等需求信息,系统就会在几分钟内自动生成一份用户风险分析报告。
是否为黑白名单用户、是否属于高风险人群……根据报告提供的这些信息,原本在银行、网贷平台、融资租赁公司眼中“信用不足”的人,也有可能获得贷款。
2012年,在美国留学并工作6年的周灏回国发展,当时没有户口、没有本地社保、没有身份证,即便他收入状况不错,拥有多张国外信用卡并且记录良好,但想要得到一张国内银行的信用卡却十分困难。
“评价‘信用’的标准其实可以很丰富,除了车房抵押、银行流水,消费记录、手机号码使用记录都应该成为一个人是否应该获得贷款的评价因素。”周灏说。
今年1月上线以来,量化派已经帮用户累计成功申请数千万元贷款,注册用户超过十万人。
10万个角度绘出“信用画像”
银行专业人员无法判别的信息,一家大数据企业凭什么就能从中看出风险高低?
在量化派位于中关村互联网金融中心11层的办公室里,周灏向记者解释了数据“识人”背后的秘密。
首先,数据分析人员需要用计算机建立一个数据模型。为了便于理解,人们可以把这个数据模型当作一个“黑盒子”。“黑盒子”会通过一项名叫“机器学习”的技术进行自我完善和调整。
举例来说,当既有数据显示,1万个信用良好的人全部都有两年稳定淘宝购物记录的话,“黑盒子”会“学”到一个小知识——有两年稳定淘宝购物记录的人信用风险可能比较小。
什么样的细节,“黑盒子”会判断它为“高风险”呢?“假设申请人填写的工作地、常住地为北京,他的手机通讯数据却显示他常年在边远地区活跃,那么有很大的可能是他说谎了。”周灏说。
通过与银行、征信机构合作,周灏的公司拿到了不少可供“黑盒子”自我学习的基础数据。当模型积累了成千上万个小知识,这个“黑盒子”逐渐成熟,便可以用来检验、筛选贷款人了。
当一名贷款申请人把自己的信息查询渠道授权给“信用钱包”,所有与他相关的信息会迅速进入这个“黑盒子”,接受检验。除了用户主动提交的信息,“信用钱包”还与征信机构等第三方机构合作共享信息。
“分析一名用户的信用情况,我们最多已经有十万个特征信息可供参考了。”周灏说。也就是说,为一位贷款人绘制一幅信用画像前,“黑盒子”最多已经有了十万个观察角度。
大数据下埋“金矿”
在国外从事信用模型分析工作时,一些有趣的现象让周灏被大数据的“聪明才智”所震撼。
根据数据分析结果,一天只刷一次牙和不刷牙的人,比每天刷两次牙的借款人,贷款风险较大。在美国的加油站,一天刷三次以上信用卡的人,贷款风险较大。工作人员探究后发现,一天刷两次牙的人,比较注意保护自己的健康,而他们通常也更加注意保护自己的信用健康,不会轻易借钱不还、损伤自己的名誉和信用。而一天内多次在加油站刷卡的人,可能存在刷卡套现的不良行为。
火眼金睛般捕捉人们不经意间留下的“痕迹”,大数据真能“识人”。
其实,除了帮助金融机构识别贷款人的信用度,大数据在本市的电商、文化创意、城市管理等领域都已经开始挖掘“金矿”。
在商业中,大数据被京东用来预测用户购买行为——注重生活质量的年轻女性在购买加湿器时,往往会顺便购买花生豆等零食,因此加湿器和花生豆摆放在相邻的货架能够提高物流效率;在文化创意领域,大数据被新影数讯公司用来预测票房——演员、题材内容、档期、首映口碑,都会成为影响一部电影卖座率的因素;在城市管理领域,大数据被用来提供决策参考——整个城市的地铁闸机刷卡数据被收集、分析后,能够直观地看出人流流向和拥堵情况。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22