
大数据时代的安全边界_数据分析师培训
在移动互联网纵深发展的趋势下,毋庸置疑,人类已走入了大数据时代。当海量数据信息见证着人们的现实生活,大数据分析技术广泛应用,也使人们生活变得越来越透明,传统的安全边界越来越模糊。
根据IDC数据显示,目前互联网上的数据每年增长50%,每两年翻一番,全球互联网90%以上的数据是最近几年才产生的。
最早洞见大数据时代的数据科学家维克托·迈克·舍恩伯格在《大数据时代》一书中曾指出:大数据带给人类生活的益处是多方面的,不仅是人们获得新认知、创造新价值的源泉,还是改变市场、组织结构以及政府与公民关系的方法。但他同时也指出,大数据相比传统互联网,会给网络安全带来更多威胁,给用户隐私带来更大挑战。
大数据技术给数据使用的隐私问题带来了新挑战。对于企业来说,企业决策从“业务驱动”转变为“数据驱动”,企业需要遵守更严格的安全标准和保密规定,对数据存储与使用的安全性和隐私性要求由此提高。
对于个人而言,大数据时代,个人数据是一种信息资产,但这种资产却在用户不知情的情况下被收集、分析,以正当或不正当的方式用以牟利,个人生活似乎时刻被置于“老大哥”的监视之下,隐私安全受到了巨大挑战。
数据共享是大数据的现实价值,但隐私保护又关系到公民个体和国家整体的安全。如何平衡大数据使用和隐私保护是亟待解决的问题。
传统的隐私规范采用“告知与许可”原则,即让人们自主决定是否、如何以及经由谁来处理他们的信息,这就意味着将个人隐私保护的责任放在了每个公民个体的受众。但在大数据时代,由于二次使用的存在,“告知与许可”缺乏现实可行性,学者因此提出应改变传统的隐私保护体系,将隐私保护的责任由公民个体转移到数据使用者身上,即由数据使用者为其行为承担责任,而非停留于收集数据之初的是否取得个人同意。
围绕这一原则,相关学者目前又提出了数据脱敏技术和数据分类分级等一系列隐私保护手段。信息脱敏技术是指将数据脱敏为不含用户隐私的测试用数据,但是由于结构化数据在大数据时代关联性非常紧密,使得单个数据集的脱敏不能解决两个各自不敏感数据集放在一起就变为敏感数据集这类的问题,因此需要针对具体行业和具体问题开发、采用不同的脱敏技术。
数据分类分级从隐私安全与保护成本的角度出发,对数据进行分类和等级划分,进而根据不同需要对关键数据进行重点防护。但是传统的数据分级对于大数据时代来说过粗,许多研究机构正在探索进一步细化可行的分级标准。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08