
大数据时代传媒思路的转向_数据分析师
大数据影响媒介生产思路
大数据与传媒业的相遇,首先碰撞出的是数据新闻、机器人新闻、预测新闻等全新的报道样态,媒体对来自政府、企业、互联网的大数据加以利用制作出可视化新闻,改变了过去只依赖事实而缺少数据支撑的报道逻辑。除此之外,大数据对传媒业的影响,还体现在媒介内容生产思路的变化上。
过去被媒体视作原子化的“大众”的媒介使用者们已转身成为个性化的“用户”。如果说“受众”只是单向传播的被动接受者,那么“用户”对媒介的利用更为主动,选择空间更大,而且能够生产原创的信息回流给传统媒体。他们称得上是传媒业大数据的贡献者,如Facebook每天更新的照片数量达到上千万张,Youtube平均每秒上传一段长度在一小时以上的视频,每天世界各地数以亿计的网民在网络上互动交流……用户留下的网络痕迹,已经成为一种重要的大数据资源。通过挖掘这些数据,传媒可以更好捕捉到用户的个性化需求、潜在的兴趣点,从而主动向用户推荐满足需求的信息,开创一种“按需推荐”的内容生产模式。
正如Frog Design咨询公司的观察家所言:“我们正在离开信息时代,迈入推荐时代。”作为移动媒体终端的“今日头条”,就是一个践行“按需推荐”模式的例子。2014年6月,“今日头条”这款号称“不生产新闻,只搬运新闻”的手机客户端完成1亿美金的融资,引发关注。其内容组织方式就是一种大数据分析基础上以用户为中心的模式,以往传统媒体的内容生产主要靠编辑选取新闻,但“今日头条”是靠算法推荐新闻。按照创始人张一鸣的说法,“今日头条”会“根据用户绑定的微博,自动建立一个用户的DNA兴趣图谱,主要根据用户SNS账号上的标签、关注人群、好友、评论或转发、收藏等数据,以及用户的手机、位置、使用时间等数据提取出来……随后系统会自动记录用户的阅读情况,不断摸索用户的兴趣,同时也在不断优化推荐的算法。六七次之后,机器就能基本上判断出用户的兴趣了”。
其实,个性化推荐服务在网络电商平台上早已普及,电商通过分析消费者对产品页面的浏览、评论、收藏、添加到购物车等行为,可以向其推荐感兴趣的其他商品,从而实现精准的广告营销。这一思路换至新闻领域,同样适用。从长远看,依照新媒体“按需推荐”的逻辑组织和布局媒介内容,是传统媒体在大数据时代的变革方向。
大数据为媒体提供了受众的信息需求
“按需推荐”蕴含着有别于以往传者主导传受关系的理念,更加强调用户地位、用户体验、用户评价。传统媒体由于新闻生产周期的固定化,可以在日积月累中塑造忠诚度较高的受众的“新闻期待”意识,但仍无法跟上网络时代全时传播的脚步。与其让受众“期待”媒介等米下锅,不如媒介主动“推介”信息送货上门。
落实到具体报道中,则意味着传统媒体更重视新闻价值中的受众效用。作为新闻生产的核心概念,新闻价值对媒体来说,是一套衡量和选择新闻的职业准则,但对受众来说,则集中体现为一种使用价值,即是否有用。如果受众自己对新闻不关心、不感兴趣或不需要,即便传媒把它报道出来了,但站在接受者的角度依然是没有价值的。而如今,受众的信息需求更加分化和多元,面对“分众”和“小众”的现实,传媒与其调整新闻价值的标准,不如根据受众看重的使用价值,将新闻重新分类打包再分派推送出去,以实现效用的最大化。
受众的认可或买账,在一定程度上决定着传媒的市场空间。就像过去电视节目的质量高低由收视率来衡量一样,如今,用户媒介使用行为、阅读习惯等大数据,更能聚沙成塔般地折射出他们对传媒的整体态度。比起依靠随机样本获得的收视率,大数据分析可以呈现覆盖全样本的总体态势,据此得出的结论也具说服力。与收视率相比,基于大数据生成的直观用户评价,无疑对传统媒体制定内容调整策略有更高的参考价值。文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08