
大数据时代,如何评价人才_数据分析师培训
预测性评价
问:目前,人才评价工作中存在的突出问题是什么?
答:人才评价工作非常重要,是人才发现、引进、培养、选拔、使用、激励的依据。传统上,对人才的评价是经验性评价,是对已有成果、已有资历作出的判断。
问题是,当今世界充满了不确定性、风险性和不可预测性。过多关注过去的人才评价模式有很多局限性,尤其不适合创新型人才引进评价,而且特别不适合海外年轻拔尖人才引进评价。因为,创新型人才是发展中的人才,需要的是面向未来的评价,是“加油站”式的评价,评价要能为他们的未来发展加油鼓劲。
问:大数据将给我们的人才评价工作带来怎样的改变?
答:人才评价的一个极为重要的作用是发现和甄别人才,基于此的人才评价要为人才使用和发展服务,要特别重视未来,而不是过去。而大数据最重要的功能,是能把未来一些不确定性的东西准确地预测出来。2008年,谷歌的一支研发团队利用在网上收集到的海量个人搜索词汇数据,赶在政府流行病学家之前两星期预测了甲型H1N1流感的暴发。这样的事情在以前是不可想象的,掌握了大数据后,谷歌就做到了。
大数据浪潮,让人类在历史上第一次有机会用数据围绕一个东西形成完整的描述。凭借日益增强的数据分析能力,人类得以有效实现对未来的预测。大数据可以帮助人们提升人才评价的整体水平,解决人才评价面向未来的问题。
问:历史优秀的人才,不是更有可能取得更大成就吗?
答:这可不一定。很多人评上教授后,可能一生都一事无成,人不是一定会越变越聪明的。社会进步需要更加有潜能、更加能创新的人,而这些人绝对不是单凭学历、职称就能看出来的。
精确度提高
问:人们常说要慧眼识英才,大数据能替代伯乐的直觉吗?
答:正是因为掌握数据的不充分,才逼得我们不得不依靠直觉。历史发展到今天,人才更为丰富多样,伯乐的直觉已不能满足现实需要。丁肇中先生就说过,同行评不出来创新人才,因为他们都是用已有的知识来评价人才,而创新人才是要面向未来的,不是一个模子刻出来的。只有大数据才能解决这个问题。
考察一个人,要有足够的数据情报,这就是美国中情局的强项——对关键人物数据掌握得非常细致。他们会不择手段,挖掘全部数据。你从哪个医院出生,父母怎么样,几岁还在尿床,小学犯过什么错误,中学有什么劣迹,大学时谈了几次恋爱,做过什么股票,亲戚有没有贩毒……都在掌握之中。他们能从一个人高中时经常上树判断出他“个性叛逆”。这些正是我们在人才评价中欠缺的。
问:是不是可以这样理解,大数据带来的不仅是信息技术领域的革命,它正在改变着我们理解世界的方式?
答:是的。迎接大数据时代,需要形成“大数据思维”。大数据不仅是一种实用工具,而且是一种思维方法。美国的卫生防疫部门积累了多少年,人才、专业上都有绝对的优势,为什么干不过谷歌?因为谷歌不和你拼专业,它拼的是信息采集量和掌握量。
大数据时代,分析事物之间的联系,不再限于线性联系,而是特别重视事物的相关性。现在美国卫生防疫部门也在做出改变,效果明显。比如,他们会监控全纽约200多万人上班刷卡的数据,刷卡情况会直接汇总到应急中心,如果有一天10%的人没刷卡,他们就开始启动疫情分析工作。
问:我们从中能借鉴什么呢?
答:对人才信息的采集、利用要给予更多关注。我们现在的问题是,搜集一个“坏人”(罪犯或贪官)信息所下的功夫,远比搜集一个“好人”信息要多得多。如果我们肯像搜集“坏人”信息一样去搜集“人才”信息,人才评价问题就解决了。
全球化视野
问:大数据运用到人才评价,应从何处入手?
答:如何最快捷地让社会接受新的理念?要从技术上入手解决。比如,“花未来的钱”的观念,中国通过推广信用卡做到了。信用卡,不光是方便,更大功能在于刺激消费。我们这个世代崇尚存钱的国家,接受消费文化这么快,就是因为先从技术上入手了。
大数据时代的人才可以出现在世界任何一个角落,他可以为世界上任何一个公司效力,人才国际化将全方位开启,人才战争将比以往更为激烈。谁能尽早把大数据体系建立起来,谁就能在新一轮人才战争中占据主动地位。全国性大数据平台的建立,还将直接减少研发成本,少走弯路,缩短研发周期,促进科研人员迅速取得一些创新成果。
此外,针对违法犯罪分子,我们普遍采用了测谎仪,如果科研人员愿意用同样的技术下功夫,制造出一个潜能仪,恐怕什么样的人才都能评得准。
问:这么说,对数据量的占有将非常关键?
答:对。国际猎头能准确找到人才,就是因为占有了海量数据。我们没有大数据,就只能在不充分的情况下进行人才评价。大数据能够帮助人们解决这个问题,从理论上讲,凡是符合条件的人都可以进入评价视野,这就解决了“少数人从少数人中选人”的弊端和评价标准粗放简单的问题。
问:大数据思维和手段,对创新人才的发现与评价会有帮助吗?
答:大数据的相关性视角,将为发现和评价创新人才打开一个新的天地。创新成果的产生,大多数还是和兴趣有关系,不是跟他的任务有关系,和项目的关联性不如与兴趣的关联性。人类历史上,最具原创性的科学发现,都源于一些偶然性的因素,钨丝的发现、青霉素的发现、火药的发现……很多都是来自原定计划的失败,甚至是事故。
20世纪70年代,澳大利亚两个学者,认为在高酸度胃液下生活的幽门螺旋杆菌是导致胃病的原因。论文发表时,遭到同行嘲笑,大家认为高酸环境下细菌是生存不了的。后来,基于他们的研究,药厂开发出相关药物,他们才获得认可并获得诺贝尔生理学或医学奖。我相信,在大数据时代,这样的创新人才将迎来前所未有的光明未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08