SPSS多因素方差分析(一般线性模型):方差成分分析
一、方差成分分析(数据分析-一般线性模型-方差分量估计)
1、概念:对于混合效应模型,“方差成分”过程估计每种随机效应对因变量方差的贡献。此过程对于混合模型的分析尤其有趣,例如分割图、单变量重复度量以及随机区组设计。通过计算方差成分,可以确定减小方差时的重点关注对象。
有四种不同的方法可用来估计方差成分:最小范数二次无偏估计(MINQUE)、方差分析(ANOVA)、最大似然(ML) 和受约束的最大似然(REML)。不同的方法具有各种不同的指定可供使用。
所有方法的缺省输出都包含方差成分估计。如果使用ML 方法或REML 方法,则还会显示一个渐近协方差矩阵表。对于ANOVA 方法,其他可用的输出包括ANOVA 表和期望均方,对于ML 和REML 方法,其他可用的输出包括迭代历史记录。“方差成分”过程与“GLM 单变量”过程完全兼容。
WLS 权重允许您指定一个变量,(数据分析师培训)用来针对加权分析为观察值赋予不同权重,这样也许可以补偿不同的测量精确度偏差。
2、示例。某一农业学校测量六个不同猪栏中的猪一个月的重量增加量。猪栏这个变量是具有六个水平的随机因子。(进行研究的六个猪栏是来自大的猪栏总体的随机样本。)调查发现重量增长的方差更大程度上归因于猪栏的不同而不是猪栏中的猪的不同。
3、数据。因变量是定量变量。因子是分类变量。它们可以具有数字值或最多8 个字节的字符串值。至少必须有一个因子是随机的。也就是说,因子的水平必须是可能的水平的随机样本。协变量是与因变量相关的定量变量。
4、假设。所有方法均假设随机效应的模型参数均值为零,方差为有限常数,并且模型参数互不相关。来自不同随机效应的模型参数也不相关。
残差项的均值也为零,方差也为有限常数。它与任何随机效应的模型参数都不相关。来自不同观察值的残差项被认为是不相关的。
基于这些假设,来自某一随机因子的相同水平的观察值是相关的。这就使得方差成分
模型与一般线性模型区分开来。
ANOVA 和MINQUE 不需要正态假设。它们对于对正态假设的适度偏差来说是稳健的。
ML 和REML 要求模型参数和残差项服从正态分布。
5、相关过程。在进行方差成分分析之前使用“探索”过程来检查数据。对于假设检验,使用“GLM 单变量”、“GLM 多变量”和“GLM 重复测量”。
二、模型(分析-一般线性模型-方差分量估计-模型)
具体使用方法和含义详见单变量一般线性模型。
三、选项(分析-一般线性模型-方差分量估计-选项)
1、方法。您可以选择四种方法中的一种估计方差成分。
1.1、MINQUE(最小范数二次无偏估计)可生成相对于固定效应不变的估计值。如果数据服从正态分布并且估计值是正确的,则此方法可生成所有无偏估计的最小方差。您可以为随机效应优先选择一种法。
1.2、ANOVA(方差分析)使用每种效应的类型I 或类型III 平方和计算无偏估计。ANOVA方法有时会生成负数方差估计,这可指示模型不正确、估计方法不合适或需要更多数据。
1.3、最大似然性(ML) 使用迭代生成与实际观察到的数据最一致的估计值(数据分析师)。这些估计值可能存在偏差。此方法是渐近正态分布。ML 和REML 估计值在转换时保持不变。此方法不考虑估计固定效应时使用的自由度。
1.4、约束最大似然法(REML) 估计在大多数(如果不是全部)平衡数据的情况下均可减少ANOVA 估计值。由于此方法要针对固定效应进行调整,因此其标准误应比ML 方法的标准误要小。此方法考虑估计固定效应时使用的自由度。
2、随机效果优先。统一意味着所有随机效应以及残差项对观察值具有相同的影响。零方案等同于假设随机效应方差为零。仅对MINQUE 方法可用。
3、平方和。类型I 平方和用于分层模型,分层模型常用于与方差成分有关的情况。如果选择GLM 中的缺省选项类型III,则方差估计值可用在“GLM 单变量”中,进行具有类型III 平方和的假设检验。仅对ANOVA 方法可用。
4、标准。您可以指定收敛标准和最大迭代次数。仅对ML 或REML 方法可用。
5、显示。对于ANOVA 方法,您可以选择显示平方和与期望均值平方。如果选择了最大似然性或约束最大似然法,则可以显示迭代历史记录。
四、保存(分析-一般线性模型-方差分量估计-保存)
1、方差成分估计。将方差成分估计值和估计标签保存到数据文件或数据集。这些数据可用于计算更多统计量或GLM 过程的进一步分析。例如,您可以使用这些数据计算置信区间或检验假设。
2、成分共变。将方差-协方差矩阵或相关矩阵保存到数据文件或数据集。仅当指定了最大似然或受约束的最大似然时才可用。
3、创建值的目的文件。允许您为包含方差成分估计值和/或矩阵的文件指定数据文件名称或外部文件名。可以在同一会话中继续使用数据集,但不会将其另存为文件,除非在会话结束之前明确将其保存为文件。数据集名称必须符合变量命名规则。cda数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03