京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据风控谁想做就能做_数据分析师培训
互联网金融火了,大数据风控也火了。于是,不断地有公司跳出来说自己要做大数据,为互联网金融企业提供大数据风控。那么,这些公司手里面掌握着怎样的数据呢?数据量有多大呢?
自己没有核心数据做大数据?
很多号称做大数据的公司,其实自己并没有任何的核心数据。他们所谓的大数据,无非是通过技术手段,从网上抓取的一些数据,就变为自己的核心数据,成为可以做大数据风控的依据了。但是,这样的数据,其真实程度有多少呢?我们都知道,互联网发展到今天,已经发展到一个非常成熟的时代,任何公司对自己的数据安全都是异常谨慎的。每个公司都将自己的核心数据视若珍宝,任何的核心数据都是不会主动让任何第三方抓取的,通过层层堡垒,将其保护起来。因而,通过技术手段抓取到的数据,是很难抓取到最核心的数据的,核心数据的缺失,抓取再大的数据量也是不可靠的。
没有数据量大数据风控又从何谈起?
除了第三方公司提供大数据,网贷行业内有些平台也在做大数据风控。这些平台自建风控模型,通过用户的社交账号信息、学历、星座等等指标进行信用评估,以形成信用报告。但这样的数据模型还是会面临一个问题——收集到的数据量是否足够大?2000年以后,互联网已经深入到了我们生活的方方面面,我们已经在互联网上有了足够的信息留存,通过这些数据基本就能够对一个人进行全面的评估与分析。但是这样的数据一定是巨大与繁杂的,不是哪家企业想分析就能够做得了的。况且互联网的信息,特别是社交类信息,其真实性起码应该可以打个八折吧!
什么样的数据才是最可靠的呢?
深耕互联网行业的巨头,其手中掌握的数据,才有一定的参考价值。阿里通过十几年的发展,掌握了大量网购人士和电商从业者的相关交易数据,凭借这些数据,推出了自己的大数据征信:芝麻信用;而腾讯作为另一巨头,掌握着大量的社交信息相关数据,随着微信的越来越全面,微信支付的普及,也即将推出自己的大数据征信。当然,阿里手里掌握的数据和腾讯有所不同。
基于自身领域的不同,阿里掌握着电商平台的交易数据,月成交量,流水一清二楚。这样,阿里能够运用其掌握的数据,对电商平台进行大数据风控,评估其还款能力,解决还款能力的评估的环节;而腾讯基于其及时通讯软件,能够抓取的更多的是社交数据:地区、年龄、性别、社交关系、学历、关注领域……腾讯基于自己的大数据分析之后,更多的可能就是解决还款意愿的评估。
阿里和腾讯分别解决了还款能力和还款意愿方面的评估,两者都是最核心的风控要素。这样的数据评估对网贷行业的风控促进意义非凡。
真正的大数据风控会给网贷行业带来什么样的改变呢?
p2p网贷07年进入中国,并在13年开始爆发。行业发展到现在,越来越多的传统金融企业转型做互联网金融,整个行业是如火如荼。但是,举目望去,p2p在中国落地,已经是变异了的p2p。很多平台都是线上有个网站,而借款端的业务严重依赖于线下,风控更是离不开线下。这样导致的结果就是平台规模越大,风控的压力越大。严重依赖于风控人员的个人经验,这样就导致平台除了面对业务的风控压力外,还需要面对风控人员的道德风险。但风控要都交给系统来做又会如何呢?其前提条件是,要有足够的数据。数据从何而来?电商界!
今年伊始,华南一知名的电商企业多赢以6000万注资了深圳某P2P网贷平台。电商涉足网贷,已经真实发生了。电商做p2p,依靠电商领域能够获取到的核心数据,建立大数据模型,利用大数据进行风控,从而抛弃繁重的线下,这样才能实现互联网金融的使命:便捷、高效。
大数据风控真正的实现还有很长一段路要走
国内最早涉足P2P网贷的拍拍贷,虽然有自己基于大数据的风控模型,但是综合来看,其风控在业内的口碑也不见得很好。而多赢电商虽然进入了p2p网贷领域,但其注资的平台,目前做的还是传统的房贷业务,其采用的依然是传统的线下风控模式,在短期内也很难利用大数据进行风控。但是长期看来,并不排除多赢进来后,其投资的平台结合电商资源,进行业务创新,在借款端推出电商供应链相关业务,又或者是基于自身的核心数据,加上与阿里、腾讯这样有实力第三方的征信服务商合作,真正做到大数据风控,实现互联网金融的便捷、高效。但无论如何,要实现大数据风控,都还要走一段很长的路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24