京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据让跨界更容易_数据分析师培训
上个世纪中叶,计算机还是一个要占据整个房间的庞然大物。在冷战期间,美国获取了大量前苏联的各方面资料,但苦于翻译人才不足,只能求助于计算机技术来解决翻译压力。1954年IBM公司将250个单词和语法规则搭配,将60个俄语断句翻译成了英语。当时有乐观派专家对媒体称“三年后的机器翻译一定会非常成熟”。
但这种思路很快就被证明是种误导。因为语言的变化是极其灵活的,一个单词在不同的语境和情绪下有着截然不同的含义。就像是中文的 “哪里”,可以是询问位置,也可以是一句客套话。而IBM的单词配语法有着很大的局限性,语料库始终在追求精确的语法,而人们的表达却越来越随意。到20 世纪90年代,IBM投入了大量的资金挑战机器翻译,却收效甚微,最终项目无奈终止。
2006年谷歌公司开始涉及机器翻译。谷歌的语料库跳出了两种语言互相对等匹配的传统文本翻译思路,不再仅依靠两种语言之间严谨的语法词法联系。开始基于全球互联网,利用一个更大更庞杂的数据库来进行翻译。
如果只追求单词和语法的准确,那谷歌语料库只能算是一堆残渣废料。因为谷歌语料库的内容既有来自国际组织的标准文件,也有来自网络论坛的“闲言碎语”和大量其他未经处理的互联网讯息,它掌握了不同语言质量参差不齐的文档大约有几十亿页,其中包容了大量的拼写错误。这海量的“原版”语言构成了跨语言表达的“训练集”,可以正确地推算出词汇搭配在一起的可能性。谷歌翻译出来的文字从语言美学角度来看确实没有美感,但语义沟通还是不成问题的。学会一门语言到通读文献的水平需要数年的时间,而在这种机器翻译的辅助下只需要一瞬间,细想起来运用大数据手段解决沟通壁垒的效率还是立竿见影的。
大数据的成功运用打破了不同语言之间的交流壁垒,提高了两种语言的沟通效率。在现实的经济活动中,去理解一个陌生领域的难度不亚于理解一门全新的语言。这样的问题在银行风控部门的工作中表现最为突出。各个行业发展迅速,银行面对的申请贷款企业来自各行各业,每个行业的特点迥异。尤其现在跨行业经营的现象与日俱增,这大大提升了对银行客户经理本身的素质要求。当银行面对一个全新的行业时,跨行业的理解难度就像是面对一门新语言。其次出于成本的考虑,银行负责贷后监管的人手毕竟有限,即便每个责任人再努力也不可能有充足的时间对手上的若干家贷款企业逐一跟踪。所以在短时间内有效了解该行业的管理特点,风险易发节点、频率对银行的贷款风控至关重要。简而言之,银行风控部门亟待解决的问题就是如何降低跨界沟通难度、提高跨界沟通效率。银行和企业的“跨界沟通”也需要一种有效的“翻译”手段。
大数据手段冲破语言沟通障碍案例对经济领域的跨界沟通有着重要的指导意义。传统的思路中,资方会通过财务报表来衡量一个企业的优劣,但事实证明这种办法是“小数据”思路,在数据采集手段更为便利的今天,似乎财报的短板在日益凸显,毕竟财报的三张表是可以用PS手段来美化的,并不能如实反映企业情况。
谷歌语料库包含了互联网上的各种语言“细节”,在翻译的过程中会甄选最贴近真实情况的平行文本,所有能最大限度反映语言的本意。一家企业的财报数据量一般是几十个KB,而如果统计几年的明细数据可以到十几个GB,这写明细数据包括企业订单、库存、下线、结算、付款这些核心环节的所有数据。通过相应的大数据算法模型来进行清洗和分析后“翻译”成银行或相应部门能够“理解”的版本,是解决信息不对称问题的有效途径。
李克强总理在刚刚结束的两会上也提到了“互联网+”和“大数据”的概念,未来几年的大数据和互联网的发展基调非常明显。事实上国内已经有企业在“大数据金融”领域走在了世界的前列,通过大数据手段为中小企业争取了数十亿的纯信用融资,并且至今没有发现一笔不良。大数据的概念在深入人心,大数据成功实践的案例也在不断增加。文章来源:CDA数据分析师官网
大数据的魅力在于“通达”,大数据手段可以提高两种不同语言的沟通效率,可以降低不同经济领域的跨界难度。尤其对于金融部门,大数据手段恰可以真实反映企业状况,提前判断未来可能发生的经营风险。大数据时代来了,谷歌让两种语言的沟通更顺畅,经济领域的跨界沟通还会远吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26