京公网安备 11010802034615号
经营许可证编号:京B2-20210330
b. 使用说明
PROC ANOVA 语句的选项主要有:
DATA=数据集名 指明要分析的SAS数据集,缺省时SAS将使用最近建立的
数据集.OUTSTAT=输出数据集 指定分析计算结果输出的数据集名.
CLASS语句指明分类变量,是ANOVA过程的必需语句,并且必须出现在MODEL语句之前. 分类变量可以为数值型或字符型,分类变量的个数表示方差分析的因素个数.
MODEL语句定义分析所用的效应模型,即方差分析的因变量和效应变量. 在方差分析过程中,关键在于定义线性数学模型,常用的模型定义语句有:
MODEL y=a 单因素一元方差分析
MODEL y=a b 双因素无交互作用一元方差分析
MODEL y=a b a*b 双因素有交互作用一元方差分析
MEANS语句用来计算该语句所列的每个效应所对应的因变量均值,其选项用于设定多重比较的方法.
GLM 即广义线性模型(General Liner Model)过程,对于非平衡数据,应采用GLM过程.它使用最小二乘法对数据拟合广义线性模型. 该过程功能强大,数据分析师可用于多种不同的统计分析中. GLM过程用于方差分析时,主要语句和使用格式与上述ANOVA过程类似 .
2. 应用实例
一个工厂用三种不同的工艺生产某种电池. 从三种工艺生产的电池中分别抽取5个样品,测得样品寿命的数据如下(单位小时):
|
|
工艺1 | 工艺2 | 工艺3 |
| 1 | 40 | 26 | 39 |
| 2 | 46 | 34 | 40 |
| 3 | 38 | 30 | 43 |
| 4 | 42 | 28 | 48 |
| 5 | 44 | 30 | 44 |
我们"数据分析师"要研究的指标是电池的寿命,工艺是影响寿命的一个因素,三种工艺分别是该因素的三个水平. 在试验中我们假设其它因素都处于相同的状态. 这里我们"数据分析师"希望利用上面得到的数据来考察“工艺”的不同是否对“寿命”这个指标有影响?
sas 输入过程
Data exam;
Do I=1 to 5; /*每个处理下5次重复*/
Input x@@;
Output;
End;
End;
Cards;
40 46 38 42 44
26 34 30 28 32
39 40 43 48 50
;
Procanova; /*调用方差分析过程*/
Class trt; /*定义处理为分类变量*/
Model x=trt; /*定义效应模型*/
Title '方差分析';
Run;
sas 结果输出
Analysis of Variance Procedure
Dependent Variable: X
Source DF Sum of Squares Mean Square F Value Pr > F
Model 2 573.33333333 286.66666667 19.77 0.0002
Error 12 174.00000000 14.50000000
CT 14 747.33333333
R-Square C.V. Root MSE X Mean
0.767172 9.847982 3.80788655 38.66666667
以上结果相当于方差分析表, F值为19.77,显著性水平为0.0002,小于0.01,说明各处理间的均值差异极显著.
注:GLM过程与ANOVA应用过程类似,GLM过程中可以进行回归分析、方差分析、协方差分析、剂量反应模型分析、多元方差分析和偏相关分析等等,其功能之强大可见一斑。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29