
拥抱大数据时代 把复杂的事情简单化
以“大数据开启大未来”为主题的百度The Big Talk 第三期活动8月31日在北京举行。美国MIT人类动力实验室主任、可穿戴设备先驱、世界经济论坛大数据发展报告与个人数据报告的共同发起人阿莱克斯·彭特兰(Alex Pentland)做了有关“可穿戴设备和大数据收集”的一系列演讲,并与中国专家进行了交流与讨论。
大数据对于很多人来说并不陌生,比如通过分析银行卡的消费路径以及消费地点数据,一些连锁店的运营者就可以知道哪些店可以合并,哪些店需要撤销,哪些地方需要开设新店。但当前大数据的四大特征是,规模大、变化快、种类杂、价值密度低。彭特兰教授认为,随着大数据技术的进步以及网络安全技术的提高,大数据必将为我们带来一个更加便捷和多彩的未来世界。
在2014年4月24日百度技术开放日上,百度公司董事长兼CEO李彦宏现身并推出了百度大数据引擎。大数据引擎将百度在大数据的数据、能力和技术开放给行业,行业可以近身距离甚远的大数据盛宴,百度则寻到了一个新的增长点。
百度大数据引擎一共分为开放云、数据工厂和百度大脑三个部分。百度将基础设施能力、软件系统能力以及智能算法技术打包在一起,通过大数据引擎开放出来之后,拥有大数据的行业可以将自己的数据接入到这个引擎进行处理。同时,一些企业在没有大数据的情况下,还可以使用百度的数据以及大数据成果。
许多政府部门拥有海量大数据——交通部门有车联网、物联网、路网监控、船联网、码头车站监控等地方的大数据,卫生部门拥有流感法定报告数据、全国流感样病例哨点监测和病原学监测数据,公安部门有大量的视频监控数据。如果这些数据与百度的搜索记录、全网数据、LBS数据结合,在利用百度大数据引擎的大数据能力,则可以实现智能路径规划、运力管理、流感预测、疫苗接种指导、安防追逃等等。
许多企业也拥有海量大数据,但它们几乎都没有大数据能力,坐拥海量数据却一筹莫展。如果能够应用百度大数据引擎,则可以对海量数据进行可靠低成本的存储,进行智能化的由浅入深的价值挖掘。在百度技术开放日上,中国平安便介绍了如何利用百度的大数据能力加强消费者理解和预测,细分客户群制定个性化产品和营销方案。
可以看出,大数据引擎的输入实际上是百度拥有的大数据以及行业已有的大数据,而输出则是各种行业应用成果,也就是大数据的“价值”。
有业内人士认为,大数据或许会在未来某个阶段被定义为:对人类世界的真实还原,并且不断的满足我们的任何愿望,曾经我们依靠它来决策一些事情,现在我们依靠它来直接抵达我们想要做的事情,我们所有的行为都已经成为我们决策的一部分。
TED创始人、被誉为“信息架构之父的” 理查德?沃曼(Richard Saul Wurman)认为,对大数据的分析利用应该进一步准确定义为“大理解”。在他看来,尽管今天很多人提到“信息爆炸”,但事实上人类在很多领域对数据的理解并不够深入,如在城市信息化、金融、医疗等领域,数据可以帮助我们把复杂的事情变得简单。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26