京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从大数据中创造价值的关键,在于选择合适的工具来迁移与储存资料,进而有效地发掘新洞察。为了将这些洞察转换为可执行的营运策略,新资料必须能与现有的资料、基础架构、应用程式与流程安全地整合在一起。甲骨文最新发表的解决方案能无缝地协同运作,协助企业以更低成本、更少风险,更快地发挥企业大数据的效益。这些解决方案能让客户安全地存取Hadoop、NoSQL和关联式资料库,以便轻松、并具成本效益地分析大量且多样化的资料集(data set)。
IDC 商业分析研究副总裁Dan Vesset表示:「单一技术将不再足以支援所有的分析使用情况,此外,若将资料管理与分析视为无关连性的专案,将会导致难以管理IT的困境并面临不必要的风险;IDC预测,到2017年前,统一的资料平台架构将成为企业大数据与分析策略的基础,这种统一化的趋势将出现在资讯管理、分析、和搜寻技术等层面。」
甲骨文大数据部门副总裁Neil Mendelson表示:「资料已成为一种新形态的资产,企业必须策略性地投资其资料资产,以创造最佳的投资回收。甲骨文提供一整合式平台,协助客户简化所有资料的存取、发掘新洞察、实时(real-time)预测成果,并确保所有资料的有效管理与安全性。」
甲骨文最新大数据解决方案亦可无缝运作于日前发布的Oracle Big Data Appliance X5和Oracle Exadata Database Machine X5上。这些解决方案结合在一起,可为企业提供一完整、具成本效益的平台,以便存取、发掘、管理、保护、进而实现大数据之价值。
最新发布的大数据创新方案包括:
● Oracle Big Data Discovery:这是「Hadoop 的视觉呈现」,并是一可集发现、探索、转换、发掘以及分享大数据洞察为一体的端到端产品。大数据资产可被组织内更多的商业分析师所使用,因此能降低风险,并缩短大数据专案创造价值的时间。
● Oracle GoldenGate for Big Data:以Hadoop为技术基础,让客户从异质交易型系统实时串流非结构化资料到大数据系统,包括Apache Hadoop、Apache Hive、Apache HBase以及Apache Flume。透过将既有的实时架构纳入大数据解决方案中,Oracle GoldenGate for Big Data协助客户强化大数据分析的专案项目,并确保大数据库能与生产系统同步更新。
● Oracle Big Data SQL 1.1:拥有与甲骨文资料库一样的安全性,这是一种可将Oracle SQL扩展至Hadoop和NoSQL的技术。透过一条Oracle SQL语句的快速查询,即可通透地存取Hadoop、NoSQL和Oracle Database中的资料。Oracle Big Data SQL 1.1可为Hadoop和Oracle Database提供更紧密的整合,查询性能较之前的版本提高40%。
● Oracle NoSQL Database 3.2.5:这套具调适性的解决方案,能让开发人员建立高效能的新一代应用程式。此最新版本具备可预测的低延迟、RESTful API、和基于Thrift的 C API,并与Oracle Big Data平台整合在一起。以Oracle Big Data SQL为基础,Oracle NoSQL Database 3.2.5亦可支援资料定义语言(DDL),因此能更容易地使用SQL来查询NoSQL资料。
Oracle Big Data Discovery现已正式上市
Oracle Big Data Discovery可充分发挥Hadoop的强大功能,使用者能快速、轻松地将塬始资料转换为可执行的商业洞察。
● 如同线上购物般轻松地探索大数据:Oracle Big Data Discovery具备绝佳的视觉介面,能在Hadoop中发现并探索塬始资料。类似于便条纸一样,它可揭露资料属性与资料组合之间的统计关联性,进而可评估此资料集是否具有潜能并值得进一步的研究与资源运用。使用者可透过熟悉的指引式导航与强大的搜寻功能,轻松浏览互动式的视觉资料目录。
● 大规模地转换并增强资料:Hadoop 中的塬始资料在进行分析前需先准备就绪。透过直观、类似试算表的使用方式,Oracle Big Data Discovery可降低耗时的准备周期并简化资料矛盾,使用者无需改用其他的工具或撰写程式码,即可增强资料的可视性,让更多的时间投入在资料分析上。
● 发掘和分享以发掘新价值:资料发掘与分析使用的工具与资料准备不同。Oracle Big Data Discovery可协助使用者无缝地从准备工作迁移到资料分析,并可一键分享资料洞察。使用者能就资料产出的结果强化合作,将塬始资料集传回 Hadoop,并在Pig、Hive和Python等其他工具上进一步运用资料结果。
● 将大数据开放予更多人使用:大数据常仅被一些非常专业、收费高昂且少数的资料科学家所使用,Oracle Big Data Discovery能让大数据更容易管理,使包括分析团队与商业使用者等更多人员轻松地运用大数据。它可与既有的大数据工具整合,让企业轻松地扩大其大数据团队,充分发挥企业的人力资本、并从资料资产中获得最大的效益。
支援性资源
● Big Data Discovery:创造价值的五个步骤
● 透过Facebook、Youtube、Twitter了解 Oracle Big Data Discovery
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16