
大数据企业想要成为行业巨头的5个要素
Navin Chaddha是早期阶段风险投资公司Mayfield的总经理。这家公司目前正在投资的一些公司包括Gigya、Elastica、Lyft、MapR和Poshmark。
随着2014年下半年的到来,大数据俨然已经成为了一种社会主流,它影响了我们的休闲读物、多个产业的格局和面向消费者的应用等各方各面,同时也左右了大批资本的流向。风险投资行业在过去45年的时间内已经见证过许多技术周期——从PC时代的诞生,到主从式架构计算和基于网络计算的发展,还有云端和SaaS模式的崛起,我们对一家公司从创业阶段发展成行业巨头的模式已经形成了一种固有的认知。
根据我们的观察所得,成为一家基业长青的大数据公司需要具备以下的条件:
1. 从平台向生态系统的转换
要了解一个技术平台是否掌握主导地位,最清晰的方式就是看看这个平台的生态系统建立速度有多快。例如在SaaS时代,Salesforce能够快速成为业界领军的原因正是它拥有一个庞大的生态系统。大数据时代也是一样。
在大数据领域有一家叫做MapR的公司发展十分迅速,它就是一个从平台转换成生态系统的例子。作为一家Hadoop平台的服务商,它是唯一能够将开源(社区创新、便携性和灵活性)的优势体现在独特的平台架构升级的公司,为客户提供企业级的可靠性、安全性和性能。
MapR的生态系统不仅融合了新兴的Hadoop开源社区,而且在MapR App Gallery中迅速扩展合作伙伴的解决方案组合。企业客户可以在这个生态系统当中利用现成的大数据工具和应用轻易地部署和扩展大数据方案。
另外一个例子是MongoDB,这是一个业界领先的开源NoSQL数据库,被多家公司用于各种类型的应用当中。MongoDB正在为各行各业的合作伙伴建立一个大规模的生态系统。
2. 解决没有人愿意处理的棘手问题
这并非大数据世界当中最光彩的部分,然而我们相信这种类型的工作会造就许多大公司。在主从式计算的时代,数据整合先驱Informatica在解决复杂的数据整合难题的过程中逐步成为业界巨头,而且在Gartner Data Integration Magic Quadrant当中占据了连续八年领导地位。
在这个领域值得留意的另外一家公司是Trifacta,它的平台可以帮助技术类和非技术类的分析师将原始数据转换成可执行的数据。
3. 在大数据时代彻底改造商业智能,在获取数据的同时提供分析结果
像Business Objects能够帮助行业管理人员获取数据分析的结果,于是它成为了主从式计算时代的行业巨头。我们认为一部分的大数据公司也正在成为像Platfora这样的公司,后者能够在本地部署Hadoop,实现快速获取实时可视化的分析结果。
4. 深入运用专业领域的知识
确保专业领域的宝贵知识能够运用到你的分析应用当中,这样你才能立于不败之地。SAP就是利用这个策略成为了软件行业的巨头。
我们从Palantir这样的大数据分析公司当中看到了这种宝贵的专业知识,这家公司专门为反诈骗和网络安全这些特殊领域提供由人力驱动和机器协助的解决方案,它服务的垂直行业包括国防、保险、医疗和执法等。将机器数据转化成分析结果的Splunk也能体现出这种特质。
5. 利用直观的界面取悦客户
为你的IT和行业客户提供赏心悦目的数据交互界面;理解用户与应用进行交互的方式,不断改进用户体验的细节,做出直观和美观的界面。例如Dropbox在实现了一种简单直观的文件共享方式之后就迅速成长为一家行业巨头,现在它在世界范围内已经拥有超过2亿用户。
能够提供直观界面的大数据公司还包括Tableau,这家公司通过生成可视化内容 查看和理解数据,并从中得出分析结果;还有Elasticsearch,这是一个能够提供快速丰富搜索体验的开源解决方案。
大数据时代的未来
我们还需要关注的另外一个领域是物联网,因为它将会以各种全新的方式提供数据,从而改变技术产业的格局。现在这些数据的来源可以是恒温器、手机和手表,甚至是水杯这样的物品……以后的数据将会来自我们从来没有想过的地方。关于数据的所有权、生命周期和提取的全部观念都要经过重新定义,届时将会催生出一大批新的公司。这将会掀起新一轮的创新大潮,公司会推出一些以前从来没有想象过的全新产品和服务,而现有的产品和服务将会改写。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27