京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据企业想要成为行业巨头的5个要素
Navin Chaddha是早期阶段风险投资公司Mayfield的总经理。这家公司目前正在投资的一些公司包括Gigya、Elastica、Lyft、MapR和Poshmark。
随着2014年下半年的到来,大数据俨然已经成为了一种社会主流,它影响了我们的休闲读物、多个产业的格局和面向消费者的应用等各方各面,同时也左右了大批资本的流向。风险投资行业在过去45年的时间内已经见证过许多技术周期——从PC时代的诞生,到主从式架构计算和基于网络计算的发展,还有云端和SaaS模式的崛起,我们对一家公司从创业阶段发展成行业巨头的模式已经形成了一种固有的认知。
根据我们的观察所得,成为一家基业长青的大数据公司需要具备以下的条件:
1. 从平台向生态系统的转换
要了解一个技术平台是否掌握主导地位,最清晰的方式就是看看这个平台的生态系统建立速度有多快。例如在SaaS时代,Salesforce能够快速成为业界领军的原因正是它拥有一个庞大的生态系统。大数据时代也是一样。
在大数据领域有一家叫做MapR的公司发展十分迅速,它就是一个从平台转换成生态系统的例子。作为一家Hadoop平台的服务商,它是唯一能够将开源(社区创新、便携性和灵活性)的优势体现在独特的平台架构升级的公司,为客户提供企业级的可靠性、安全性和性能。
MapR的生态系统不仅融合了新兴的Hadoop开源社区,而且在MapR App Gallery中迅速扩展合作伙伴的解决方案组合。企业客户可以在这个生态系统当中利用现成的大数据工具和应用轻易地部署和扩展大数据方案。
另外一个例子是MongoDB,这是一个业界领先的开源NoSQL数据库,被多家公司用于各种类型的应用当中。MongoDB正在为各行各业的合作伙伴建立一个大规模的生态系统。
2. 解决没有人愿意处理的棘手问题
这并非大数据世界当中最光彩的部分,然而我们相信这种类型的工作会造就许多大公司。在主从式计算的时代,数据整合先驱Informatica在解决复杂的数据整合难题的过程中逐步成为业界巨头,而且在Gartner Data Integration Magic Quadrant当中占据了连续八年领导地位。
在这个领域值得留意的另外一家公司是Trifacta,它的平台可以帮助技术类和非技术类的分析师将原始数据转换成可执行的数据。
3. 在大数据时代彻底改造商业智能,在获取数据的同时提供分析结果
像Business Objects能够帮助行业管理人员获取数据分析的结果,于是它成为了主从式计算时代的行业巨头。我们认为一部分的大数据公司也正在成为像Platfora这样的公司,后者能够在本地部署Hadoop,实现快速获取实时可视化的分析结果。
4. 深入运用专业领域的知识
确保专业领域的宝贵知识能够运用到你的分析应用当中,这样你才能立于不败之地。SAP就是利用这个策略成为了软件行业的巨头。
我们从Palantir这样的大数据分析公司当中看到了这种宝贵的专业知识,这家公司专门为反诈骗和网络安全这些特殊领域提供由人力驱动和机器协助的解决方案,它服务的垂直行业包括国防、保险、医疗和执法等。将机器数据转化成分析结果的Splunk也能体现出这种特质。
5. 利用直观的界面取悦客户
为你的IT和行业客户提供赏心悦目的数据交互界面;理解用户与应用进行交互的方式,不断改进用户体验的细节,做出直观和美观的界面。例如Dropbox在实现了一种简单直观的文件共享方式之后就迅速成长为一家行业巨头,现在它在世界范围内已经拥有超过2亿用户。
能够提供直观界面的大数据公司还包括Tableau,这家公司通过生成可视化内容 查看和理解数据,并从中得出分析结果;还有Elasticsearch,这是一个能够提供快速丰富搜索体验的开源解决方案。
大数据时代的未来
我们还需要关注的另外一个领域是物联网,因为它将会以各种全新的方式提供数据,从而改变技术产业的格局。现在这些数据的来源可以是恒温器、手机和手表,甚至是水杯这样的物品……以后的数据将会来自我们从来没有想过的地方。关于数据的所有权、生命周期和提取的全部观念都要经过重新定义,届时将会催生出一大批新的公司。这将会掀起新一轮的创新大潮,公司会推出一些以前从来没有想象过的全新产品和服务,而现有的产品和服务将会改写。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22