
不关注人性的大数据,只是大忽悠_数据分析师培训
斯大林曾说:一个人的死是悲剧,一百万个人的死就是数据。如果拿医学界的术语,这是一种共情疲劳,如果换成时下最流行的术语,就是我们还无法处理大数据。
上周参加腾讯思享会,主题就是“大数据将如何影响社会变革”。场间针对大数据,提出了不同的声音,有“数据孤岛论”:现有的大数据是断裂而封闭的,比如腾讯说自己有某方面的全数据,但是否有百度,有阿里的?有“数据阴谋论”:现在在用大数据做事的就是大企业和政府机构,如果我们普通人不能掌握,那就是被一个无形的网所束缚、所监控。有从经济安全角度来看待大数据处理“黑箱”问题时的作用。也有从实践角度来谈论大数据在商界中的应用。但最触动我的是下面两个观点。这里简单摘编下以飧读者。
不关注人性的大数据是大忽悠---刘德寰
现在主流对大数据的理解是基于维克托的《大数据时代》进行二次改良。但这其中有两个十分值得商榷的观点,一是对抽样的极端蔑视,二是无原则的推崇相关。大数据是一种抛弃随机分析法(抽样调查)而对所有数据进行处理,那么这其中就存在一个由斯坦福Trevor Hastie提出的问题,如何在稻草里找一根针,前提是很多稻草长得和针一样。这是我们所有大数据研究面临的最大风险,数据太大之后带来的实际上是一个规律的丧失和失真,千万不要忽视了抽样。
抛开这两个观点,更为可怕的是现在的大数据鲜有关注人性。先举个生活中大家都遇到过的问题,一个人去网上买了5升的洗衣液,整个流程花费了不到1分钟。第二天浏览网页,他发现旁边的广告就是各种各样的洗衣液。这是什么?基于大数据的精准营销? 这恐怕是基于大忽悠的精准骚扰吧。 有点常识的人都知道,5升的洗衣液就算家里人再多也要用一个月,而且那个人流程这么短,肯定就是品牌忠诚者,推广的应该是什么时候那个品牌的洗衣液会打折之类的,这才是大数据。人类早期研究问题的方法就是靠体会、知觉、体验、内省等,这些看起来跟大数据无关的东西可能恰恰是大数据的核心,因为它是思想。
谷歌2008年弄了一个非常厉害的东西叫流感趋势预测,它预测的结果比美国疾病控制中心还准,当时轰动了全球。结果后来里面东西越来越乱,严重的高估了流感的状态。为什么?这就是刚刚说的维克多流派谈大数据的时候重相关不重因果。流感跟发病的时间点,跟美国比如中学生篮球赛那个时间点是完全一致的,这俩概念能有关系吗?问题是只要搜索中学生的篮球赛,就构成了流感预测的一个主要的词之一。类似的东西太多了,为什么?因为在谷歌预测的时候,没有找疾控公共卫生的专家,这些东西才是进行大数据预测的一个很重要的前提。
基因工程才是真正的大数据
人有多少细胞?量级为10的14次方。 其中一个细胞癌变就能导致你生命的完结。难道这不是大数据?真正的大数据是生命大数据,基因筛查可以消灭先天性疾病和预防癌症,人类想在千年之后复活亦不是难事。可是这样的基因科技发展却遭遇了无数现实瓶颈和伦理挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07