
大数据分析师的“YES”与“NO”_数据分析师培训
早在20世纪90年代的美国沃尔玛超市中,就有“啤酒与尿布“的故事表现了大数据分析给企业带来的利益体现。这些年来大数据分析正在为企业带来巨大的变化。虽然越来越普遍,但数据分析中有些“YES”和“NO”却是必须遵循的。
YES!立体式分析
立体式分析即维度分析。产品数据挖掘应该在产品环境下从产品性能、市场需求、用户体验等方面切入分析。数据分析是带有商业性的,因此要立体性对于数据进行深层次整理分析,才能将各方面有价值的信息提炼出来对产品优化带来帮助。
YES!明确适用性
要注意每种统计分析方法的适用范围。许多分析方法对数据的要求很高,如果样本分布不符合要求,样本量数量不足,或存在大量伪样本,都将影响最后结果的正确性。譬如,我们经常要使用的因子分析、聚类分析,若样本量不足通过SPSS获得分析结果是没有任何意义的。
YES!正确整理数据库
在选择好分析方法分析数据时的同要按照要求整理数据库。错误的数据库格式对研究的弊处是显而易见的。在使用研究模型前,要考虑数据的适用性。同时,数据的合理转换也很重要。如在访问时经常提问出生年份而非年龄,这样可以避免误差。这样将收集到的数据进行转换也得到一样的结果。在计算时,我们还常整合几个变量成为一个或者另几个变量。
YES!分析数据可视化
大数据的体现往往是以海量的形式,而数据分析首先要整理,其次要分析。大数据的分析将能将普通的数字变成珍贵的信息,体现未来的趋势和相应的结果。一号店等企业使用大数据魔镜,将大数据可视化分析作为基础,建立起一体性的业务模型和产品,明确了顾客关系,提高了运营效率,运用数据规模化帮助企业规划。汉堡王通过Tableau系统让了解每天的业绩更便捷,为企业带来更大利润。
NO!轻视精准
数据中的每一个小数点都可能带来巨大的影响。因此数据分析不能有“不准确可以再改”的想法。做数据分析最基础的是要有严谨的态度和科学的方法。
NO!分析方式不当
数据分析是一项专业性技能,需要使用专业工具进行分析。一般分析数据的工具有Excel、报表工具、BI等,还有最新型的可视化数据分析产品魔镜。应当使用专业工具进行数据分析,可利用图表表达分析结果。而不能粗略地计算数据,以此保证其有效性。
NO!忽略数据源
足够多的数据的确是实现技术的前提,但数据越多并不是结果越准确。一旦不能保证数据来源的准确度,大量的数据反而会使数据分析难度加大,从而使最后作出不准确决策。因此不能盲目追求数据量的大,而要同时对数据源的准确性有保证。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29