
数据开放共享 推动大数据应用_数据分析师培训
随着互联网深入应用、云计算走向成熟,以及智能手机为代表的信息设备大量普及,中国社会初步形成了信息社会的雏形,为中国的产业升级、社会转型、改革创新奠定了基础。但也对数据信息的安全与共享应用产生了强烈的需求。因此,迫切需要针对数据开放采取立法、建立标准、展开执行监督等一系列的措施,一方面规范数据开放,另一方面形成数据开放的倒逼机制,推动各级政府及相关社会组织实施数据开放。
许多政府部门没有意识到只有共享的数据资源,才能释放数据的价值,因此,不重视数据开放,也不关心部门之外的数据需求,认为多一事不如少一事。一些数据富集部门将数据视作部门私产,不愿意开放,或者希望获取更大的商业利益,或主导权。一些较为权威的部门,出于数据安全的惯性使然,不愿意开放数据。这些意识问题严重阻碍数据开放与共享,影响政府的综合治理水平,应引起各级政府一把手的高度重视。
数据开放壁垒
长期以来,我们国家的信息化是以部门为中心展开的,客观上形成了行业垂直的信息化体系,在地方上形成了条块分割的信息孤岛,数据开放需要纵向层层审批,造成了信息在一个区域平台共享的难度。
数据开放是一个新兴事物,缺乏自上而下的法律法规、执行标准、开放标准,形成许多地方不知道怎样开放,开放什么,开放程序是什么,管理方式、考核评价标准是什么,等等。因此,地方推进上无所适从。
行业、区域发展水平不一致,造成信息化能力差异很大。社会公共服务产品的空缺,也形成了一些部门没有信息化动力,许多数据还仍然以纸质材料的形式存在于档案库中,没有数据化,更谈不上数据开放和数据服务。
数据安全方面的认识不一致,责任体系不清晰,造成许多部门不愿意开放数据,或以安全为由拒绝开放数据。
如何实施数据开放
1.开展数据开放的立法工作,通过人大立法机构,建立数据开放立法推进委员会,尽快启动数据开放立法,建立数据开放标准、界定数据开放边界,切实有效地建立数据开放的法制基础。
2.用信息化公共信息服务平台(产品),倒推政府相关部门的信息化,从而建立数据开放的基础。税务、工商等部门之所以信息化程度高,与他们有巨大的社会服务压力有密切关系,信息化落后的部门很大程度上是因为为社会提供的公共服务产品缺乏,从而造成信息化动力弱。提高服务能力,将逼迫这些部门加快信息化的步伐,增强数据开放意识。
3.在一些城市开展“城市数据资源管理中心”试点,在网信办的监督下,运用PPP模式,以企业为建设和运营主体,将政府、社会的数据汇聚和管理,建立城市级开放数据的统一管理平台,为数据应用创造条件。
4.从立法上,将政府内部网和“城市数据资源管理中心”的安全边界划分清楚,由“数据资源管理中心”从法律上承接其所承载数据安全的法律责任,政府内部网的信息安全由各数据采集应用部门承接相应的法律责任,从而明确数据安全的责任主体。
5.充分利用“数据资源管理中心”的公益价值,服务于民众、企业和政府有关部门,鼓励创业者利用数据资源创新创业,支持传统行业利用数据资源转型升级,通过数据资源全社会(政府、企业、个人及社会组织)的共享共治,服务于中央提出的创新国家治理体系的建设目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23