
甲骨文提升企业大数据愿景_数据分析师
甲骨文公司近日宣布推出新的大数据解决方案,它使信息访问和发掘更加简化,让客户能够快速地把数据转变成业务价值。新的解决方案包括Oracle Big Data Discovery、Oracle GoldenGate for Big Data、Oracle Big Data SQL 1.1和Oracle NoSQL Database 3.2.5。这些新产品进一步提升了企业大数据愿景,真正将Hadoop、NoSQL和SQL技术协同起来,无论在公有云、私有云还是内部部署的基础设施模式下,都能实现安全部署。
从大数据中获取价值的关键在于选取合适的工具来迁移和存储数据,进而有效地获取新的洞察。为了将洞察转化为可执行的操作,新的数据必须与现有数据、基础设施、应用和流程进行安全集成。Oracle提供的解决方案可无缝地协同工作,帮助企业以更快的速度、更低的成本和风险开发大数据。这些解决方案让客户安全地访问Hadoop、NoSQL和关系型数据库,同时轻松、经济地对大量不同的数据集进行分析。
IDC业务分析研究副总裁Dan Vesset表示:“单一的技术类型再也无法满足各种类型的分析应用场景。同时,针对一系列不相关项目的数据管理和分析将导致企业IT陷入不可控制的困境并面临不必要的风险。根据IDC的预测,到2017年,统一的数据平台架构将成为企业大数据和分析战略的基础,这种统一化的趋势将出现在信息管理、分析和搜索技术多个层面。”
甲骨文公司大数据副总裁Neil Mendelson表示:“数据是一种新型的资产,企业必须对它们的数据资本进行战略性的投资。Oracle为客户提供了集成化的平台,以帮助简化所有的数据访问,发现新的洞察,实时预测结果,并确保数据的有效管理和安全性。”
新的Oracle大数据解决方案可无缝运行在近期发布的Oracle大数据机X5(Oracle Big Data Appliance X5)和Oracle Exadata数据库云服务器X5(Oracle Exadata Database Machine X5)上。这些解决方案结合在一起,可为企业提供全面且经济的平台,以便于访问、发现、管理和确保大数据的实现。
最新发布的大数据创新成果包括:
Oracle Big Data Discovery是“可视化的Hadoop”,也是面向大数据洞察的,集发现、探索、转变、挖掘和分享为一体的端到端产品。大数据资产将被企业内更多的业务分析师利用,帮助减少风险并加速大数据项目的价值转化。
Oracle GoldenGatefor Big Data是一个基于Hadoop技术的产品,能让客户从异构交易型系统中将实时数据传入大数据系统中,目标包括ApacheHadoop、ApacheHive、Apache HBase 和ApacheFlume。通过把现有实时的架构合并到大数据解决方案中,客户能够强化其数据分析项目,同时确保其大数据库与生产系统时刻保持一致。
Oracle Big DataSQL 1.1将OracleSQL拓展至Hadoop和NoSQL,同时拥有与Oracle数据库一样的安全性。它通过一条OracleSQL语句的快速查询,即可在Hadoop、NoSQL和Oracle数据库中透明地访问所有数据。OracleBig Data SQL 1.1将Hadoop和Oracle数据库之间的集成变得更加紧密,且查询性能较此前的版本提高了40%。
Oracle NoSQLDatabase 3.2.5是一个适应性解决方案,能够让开发人员创建高性能的新一代应用。该最新版本提供了可预测的低延迟,RESTfulAPI和基于Thrift的CAPI,并与Oracle大数据平台实现了集成。基于OracleBig Data SQL,OracleNoSQL Database 3.2.5还支持数据定义语言(DDL),使得用SQL来查询NoSQL数据变得更加容易。
Oracle Big Data Discovery现已上市
Oracle Big Data Discovery 利用Hadoop使用户通过单一产品即可快速、轻松地将原始数据转变成可执行的业务洞察。
像在线购物一样寻找和探索大数据:Oracle Big Data Discovery提供了令人瞩目的视觉界面,以帮助在Hadoop中发现和探索原始数据。它类似于便笺本一样,可揭示数据属性与数据组合之间的统计相关性,进而评估该数据是否具有潜力以及是否值得进一步研究。通过常见的导航栏及强大的搜索功能,用户可轻松浏览交互性的可视化数据目录。
大规模转化并丰富数据:使用Hadoop的原始数据进行分析之前需要一系列的准备工作。OracleBig Data Discovery通过一个直观的类似电子表格的方式,缩短了冗长的准备周期,同时简化了数据矛盾。用户无需更换工具或者书写编码,即可增强数据可视化,从而将更多的时间投入在数据分析上。
挖掘和分享以发现新价值: 数据的挖掘和分析与数据准备需要用不同的工具。OracleBig Data Discovery让用户能够无缝地从数据准备迁移到数据分析,只需一次点击即可分享数据洞察。用户利用数据结果加强合作,将原数据集传回Hadoop,还可在如Pig、Hive和Python等其他工具中进一步使用数据结果。
将大数据访问权限开放给更多职能团队:大数据通常只掌握在一小部分数据科学家手中,而这一群体掌握着丰富的技术能力、人才稀缺且人力成本高。OracleBig Data Discovery使得大数据的管理更加简单,并可让包括分析团队和业务用户在内的更多人员轻松访问。它还集成了现有的大数据工具,让企业能够轻松地扩展其大数据团队,并从其投入的人力资本和数据资产中获得最大价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04