京公网安备 11010802034615号
经营许可证编号:京B2-20210330
甲骨文提升企业大数据愿景_数据分析师
甲骨文公司近日宣布推出新的大数据解决方案,它使信息访问和发掘更加简化,让客户能够快速地把数据转变成业务价值。新的解决方案包括Oracle Big Data Discovery、Oracle GoldenGate for Big Data、Oracle Big Data SQL 1.1和Oracle NoSQL Database 3.2.5。这些新产品进一步提升了企业大数据愿景,真正将Hadoop、NoSQL和SQL技术协同起来,无论在公有云、私有云还是内部部署的基础设施模式下,都能实现安全部署。
从大数据中获取价值的关键在于选取合适的工具来迁移和存储数据,进而有效地获取新的洞察。为了将洞察转化为可执行的操作,新的数据必须与现有数据、基础设施、应用和流程进行安全集成。Oracle提供的解决方案可无缝地协同工作,帮助企业以更快的速度、更低的成本和风险开发大数据。这些解决方案让客户安全地访问Hadoop、NoSQL和关系型数据库,同时轻松、经济地对大量不同的数据集进行分析。
IDC业务分析研究副总裁Dan Vesset表示:“单一的技术类型再也无法满足各种类型的分析应用场景。同时,针对一系列不相关项目的数据管理和分析将导致企业IT陷入不可控制的困境并面临不必要的风险。根据IDC的预测,到2017年,统一的数据平台架构将成为企业大数据和分析战略的基础,这种统一化的趋势将出现在信息管理、分析和搜索技术多个层面。”
甲骨文公司大数据副总裁Neil Mendelson表示:“数据是一种新型的资产,企业必须对它们的数据资本进行战略性的投资。Oracle为客户提供了集成化的平台,以帮助简化所有的数据访问,发现新的洞察,实时预测结果,并确保数据的有效管理和安全性。”
新的Oracle大数据解决方案可无缝运行在近期发布的Oracle大数据机X5(Oracle Big Data Appliance X5)和Oracle Exadata数据库云服务器X5(Oracle Exadata Database Machine X5)上。这些解决方案结合在一起,可为企业提供全面且经济的平台,以便于访问、发现、管理和确保大数据的实现。
最新发布的大数据创新成果包括:
Oracle Big Data Discovery是“可视化的Hadoop”,也是面向大数据洞察的,集发现、探索、转变、挖掘和分享为一体的端到端产品。大数据资产将被企业内更多的业务分析师利用,帮助减少风险并加速大数据项目的价值转化。
Oracle GoldenGatefor Big Data是一个基于Hadoop技术的产品,能让客户从异构交易型系统中将实时数据传入大数据系统中,目标包括ApacheHadoop、ApacheHive、Apache HBase 和ApacheFlume。通过把现有实时的架构合并到大数据解决方案中,客户能够强化其数据分析项目,同时确保其大数据库与生产系统时刻保持一致。
Oracle Big DataSQL 1.1将OracleSQL拓展至Hadoop和NoSQL,同时拥有与Oracle数据库一样的安全性。它通过一条OracleSQL语句的快速查询,即可在Hadoop、NoSQL和Oracle数据库中透明地访问所有数据。OracleBig Data SQL 1.1将Hadoop和Oracle数据库之间的集成变得更加紧密,且查询性能较此前的版本提高了40%。
Oracle NoSQLDatabase 3.2.5是一个适应性解决方案,能够让开发人员创建高性能的新一代应用。该最新版本提供了可预测的低延迟,RESTfulAPI和基于Thrift的CAPI,并与Oracle大数据平台实现了集成。基于OracleBig Data SQL,OracleNoSQL Database 3.2.5还支持数据定义语言(DDL),使得用SQL来查询NoSQL数据变得更加容易。
Oracle Big Data Discovery现已上市
Oracle Big Data Discovery 利用Hadoop使用户通过单一产品即可快速、轻松地将原始数据转变成可执行的业务洞察。
像在线购物一样寻找和探索大数据:Oracle Big Data Discovery提供了令人瞩目的视觉界面,以帮助在Hadoop中发现和探索原始数据。它类似于便笺本一样,可揭示数据属性与数据组合之间的统计相关性,进而评估该数据是否具有潜力以及是否值得进一步研究。通过常见的导航栏及强大的搜索功能,用户可轻松浏览交互性的可视化数据目录。
大规模转化并丰富数据:使用Hadoop的原始数据进行分析之前需要一系列的准备工作。OracleBig Data Discovery通过一个直观的类似电子表格的方式,缩短了冗长的准备周期,同时简化了数据矛盾。用户无需更换工具或者书写编码,即可增强数据可视化,从而将更多的时间投入在数据分析上。
挖掘和分享以发现新价值: 数据的挖掘和分析与数据准备需要用不同的工具。OracleBig Data Discovery让用户能够无缝地从数据准备迁移到数据分析,只需一次点击即可分享数据洞察。用户利用数据结果加强合作,将原数据集传回Hadoop,还可在如Pig、Hive和Python等其他工具中进一步使用数据结果。
将大数据访问权限开放给更多职能团队:大数据通常只掌握在一小部分数据科学家手中,而这一群体掌握着丰富的技术能力、人才稀缺且人力成本高。OracleBig Data Discovery使得大数据的管理更加简单,并可让包括分析团队和业务用户在内的更多人员轻松访问。它还集成了现有的大数据工具,让企业能够轻松地扩展其大数据团队,并从其投入的人力资本和数据资产中获得最大价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22