京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据人才市场薪酬报告_数据分析师
据idc统计,全球数据总量以每两年翻一番的速度爆发式增长,与此同时自然也催生出大量与大数据处理相关的职位。这群人在国外被称为数据科学家(datascientist),他们通过对数据的挖掘分析,来影响企业的商业决策。
不过在国内,大数据的应用才刚刚萌芽,人才市场还不那么成熟。很多公司会根据已有的资源和短板,招聘能和现有团队互补的人才。有的强调数据库编程、有的突出统计学知识、有的则要求有咨询公司或投行相关的经验,所以类型众多,诸如数据挖掘工程师、数据研究员、用户分析专家……不胜其数。
归根结底我们要了解企业对数据人才的需求源自企业的定位,(CDA数据分析师培训)专门的数据公司以及大公司的数据部门有完整的数据采集、数据挖掘、数据分析、数据结构的整套体系,而一般的企业多数只需要数据分析师,提供决策辅助和咨询。
所以,繁多的类型背后,万变不离其宗的,是数据相关职位的职能,按照职能我们可以分为四类,对应的专业和职责分别是:
1、数据分析
专业:统计学、数学、计算机、信息管理、金融。
主要职责:运用工具,提取、分析、呈现数据,实现数据的商业意义。
2、数据挖掘
专业:计算机、统计学、数学。
主要职责:机器学习,算法实现。
3、数据工程师
专业:计算机、数学、统计学。
主要职责:开发运用简单数据工具,实现数据建模等功能,需要业务理解。
4、数据架构师
专业:计算机、数学。
主要职责:高级算法设计与优化、数据相关系统设计与优化,需要有垂直行业经验。
一、数据分析相关职位
首先,来看一下数据分析师的情况。这个职位的主要技能是1(数据分析),附带2(数据挖掘),有少量的3(运用已有工具建模)的需求。因为企业对这个职位的要求是作为业务部门的参考与辅助,因此希望是多面手。title包括数据分析师(员/专员)、数据运营主管等。下面以深圳为例:
二、数据挖掘相关职位
接下来我们来看下数据挖掘工程师的情况。合格的数据挖掘工程师通常需要有3年以上工作经验。一二线城市的大中型企业和数据咨询公司有此类独立职位。主要技能为2和3(数据挖掘和平台应用)。下面以深圳为例:
三、数据工程师相关职位
接下来,我们来看下数据工程师的情况。这是比较复杂的情况,产生的title不计其数,但是归根结底,都是在已有平台和工具的基础上实现开发和运用。大部分我们见到的“数据**工程师”其实都归属此类。技能要求为3(数据结构和算法,分布式计算以及数据库知识等)。下面以深圳为例:
四、数据架构师相关职位
最后,我们来看看数据架构师,这是整个数据产业上的顶端职位,最终指向也是——首席数据官/架构专家。这个职位一般是猎头职位,要求是4(“软件工程技能牛过多数人的统计学家”、高级算法设计与优化、数据相关系统设计与优化,需要有垂直行业经验)。就是既要懂行业,又要技术资历(最少3年,一般5年),所以空缺巨大。
下面以深圳为例:
综上所述,数据相关的职位,指向的是数据采集、数据挖掘、数据分析、数据结构四大技能,即使初级职位,要求也是一专多能。高级职位则要求每个模块都有理解,对统计、编程、行业理解都要求很高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15