
用大数据提升城市管理效率_数据分析师培训
大数据产业的战略意义不在于掌握庞大的数据信息,而是要提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
目前,随着各地“智慧城市”建设的火热进行,政府大数据应用进入实质性建设阶段,大数据在各个领域的应用价值初显。专家建议,交通、环境、气象等数据均可以开放,以创造更多有价值的服务
“中国it市场已告别高速增长,2014年市场总规模为1.3万亿元。未来大数据将成为推动市场增长的重要动力。”在日前举行的中国it市场年会上,赛迪顾问总裁李树翀表示。据市场调研机构预测,未来几年,中国大数据应用市场将呈现爆发式增长,并以近90%的年均复合增长率增长,到2018年,大数据产业规模预计将达到近6000亿元。
信息技术和互联网的发展带来了数据的爆发式增长。“大数据产业的战略意义不在于掌握庞大的数据信息,而是要提高对数据的‘加工能力’,通过‘加工’实现数据的‘增值’。2013年,浪潮与山东省公安厅共建了一个‘警务云’,用1年时间整合了公安系统200多类共150多亿条数据。”浪潮集团执行总裁兼cto王柏华举例说,“比如,深夜时发现有人形迹可疑,警察可以通过云系统,找出这个人的各种信息,包括他何时坐过什么车、住过什么酒店、家庭情况等等。现在的大数据技术可以把所有的数据关联起来。”
政府部门作为城市管理与民生服务的主体,拥有大量的高质量数据资源。据了解,目前各级政府掌握着全社会信息资源的80%,其中包括3000余个数据库。赛迪顾问电子信息产业研究中心分析师张梓钧认为,随着智慧城市建设的火热进行,政府大数据应用进入实质性建设阶段,有效拉动了大数据的市场需求,带动了当地大数据产业的发展,大数据在各个领域的应用价值初显。
2014年,北京、上海、广州、贵州等省市政府在数据资源的开放共享上走在了前列。截至2014年11月,北京市各政务部门共同建设的北京市政务数据资源网,已经收集公开了36个部门机构的资源信息,内容涵盖交通、生活安全、就业、教育、社会保障等多个方面。上海市开通运行的上海市公共信用信息服务平台,已实现对外可供查询数据近3亿条。
“政府部门正在加速开放大数据。”王柏华说,交通、环境、气象等数据都可以开放,开放之后将能创造出很多有价值的服务。
值得关注的是,政府部门的大数据往往涉及机密,一旦泄露或者处理不当,将严重损害国家权益。这就要求it企业加大对电子认证、加密解密、攻击检测与防御等技术的研发投入,加强产品系统应用安全。而政府部门要抓紧推进信息安全等级保护制度,加强对数据中心及信息系统运维的监督管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23