京公网安备 11010802034615号
经营许可证编号:京B2-20210330
手机上的大数据2:手机大数据的特点
随着移动设备的功能越来越强大,移动互联网与传统互联网之间的差异愈发不容忽视。新型的技术以及数据分析方案都展现一个全新的网络模式。我们需要打破一些固有的思维,重新审视手机上的大数据。
移动互联网具有互联网的很多特征,但移动互联网作为一个新生事物,也有其自身的“不同”。
互联网造就了宅男宅女,把人们拴在了电脑桌前;而移动互联网又解放了宅男宅女,把他们又重新放回了现实世界中去。
在车站等车时,拿着手机在翻阅小说;站在商圈里,拿着手机搜寻热点商家;或者是在睡觉前,拿着PAD看看有什么娱乐信息,看看喜欢的文章,既拉长了用户们覆盖的范围,也拓宽了其使用网络的时间。
无疑,相对于成熟互联网应用而言,移动互联网的应用主要还是在填补上下班、办事途中,晚上睡觉前等碎片化时间。因此,“打发时间”类应用也跻身三大类主要应用之一,而且受众面极广。
手机上的碎片化
虽然受众面广,时间占比高,但由于“碎片”的特点,目前还没有一个很好的盈利模式将其利用起来。当然,这也是一个市场发展必然要经历的过程。先让尽可能多的用户用起来吧,暂时先不要去考虑如何盈利,为时尚早。
手机阅读的使用时间
手机视频时间
可以看到,在晚上十点至十一点手机阅读和手机视频都达到了高峰,典型的睡觉前时间,从一个侧面反映了手机应用时间与互联网应用的不同。
移动互联网绝不仅是有线的业务延展到无线那么简单。势必会产生一些呈几何图形增长的业务,充分发挥移动互联网的特点,比如LBS,比如O2O。
移动互联网的发展使得一些本来看似不相关的东西串了起来,我隐隐有种感觉。元芳,你怎么看?
所以,移动互联网的数据处理巨绝不简单是统计分析,而是多种更为先进的算法来找到隐藏在层层迷雾下面的真相。
Web Analytics(网站分析)已经被各种互联网企业、电子商务企业、以及传统行业的企业网站广泛使用。而Mobile Analytics却还是一个新鲜的事物。它和Web Analytics有继承的关系,但是又有明显的区别。
(通常所说的Mobile Analytics主要指Mobile Application Analytics,也就是各种移动设备上的原生应用的数据统计分析。)
在Web Analytics中,绝大部分情况下用户是基于浏览器的cookie进行统计的。
也就是说,其实使用同一台电脑的同一个浏览器上网的两个人会被计为一个独立用户(Unique Visitor),而同时使用同一台电脑的IE和Chrome浏览器的同一个人却会被计为两个独立用户。Mobile Analytics的对象却不同,它是按照移动设备(例如手机)来统计的,绝大部分情况下每个移动设备的使用者是唯一的。所以它比Web Analytics更能精确到人,这意味着可以在此基础上提供更个性化的服务和更精准的营销。
手机上的数据分析
这还不是Mobile Analytics唯一让人着迷的地方。浏览器的Cookie很容易被清除或覆盖,但是基于设备的统计相对更为稳定和长久。这使得用户细分(Segmentation)和断代分析(Cohort Analytics)可以更加准确和实用。我们可以通过某种条件(例如当年3月份的新增用户并且使用时长超过20分钟的)筛选出一批用户,分析他们的行为模式。
Mobile Analytics和Web Analytics还有个很大的区别是,前者统计数据时,有可能是离线或者信号不好、网络不稳定的状态,导致统计数据无法立即上传。等到数据能上传时,可能已经隔了几小时到几天不等。而Web Analytics则不会出现这种情况,不能上网就无法访问网站,如果能上网站但是不能连接到统计服务器,这部分统计数据也不会被重新发送。这使得Mobile Analytics需要更复杂的数据补偿策略。
从数据量上来说,Mobile Analytics一点都不比Web Analytics少。它需要统计很多Web Analytics所没有的数据,例如设备型号、应用版本、推广渠道、甚至位置信息,同时还有很多开发者自定义的事件。而移动设备(含平板电脑)总量的增长率远远大于PC(含笔记本电脑)总量的增长率,每个移动设备上的移动应用个数的增长也非常快。所以提供公共服务的Mobile Analytics平台都是典型的大数据应用场景。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22