
该充电了:关于大数据的干货分享_数据分析师
毫无疑问,未来将是一个大数据的世界;大数据将改变人们的生活、娱乐以及整个商业世界。想象一下,投资者能够通过大数据分析知道股票在未来的涨跌,企业能够通过大数据知道消费者的喜好,电影能够更加符合观众的口味。难道这些不能令你感到兴奋么?”
以上这些言论足以让普通人对大数据这个概念提起兴趣,但却很难让一个有经验的企业家或管理者对大数据进行投资。为什么?因为普通人靠的是感觉,而企业家靠的是数据。因此,仅仅创造出“大数据能改变未来”的感觉是不够的,企业家更需要知道大数据能够给企业带来多少回报。
关于大数据的干货
作为大数据领域的领导者,IBM在日前发布了《分析:速度的优势》白皮书,该白皮书基于IBM对全球67个国家中超过1000位业务和IT高管的深度调研,对当前大数据在中国及全球企业应用的现状进行了全面分析。该白皮书指出目前影响快速发展的数字市场的四个重大变化趋势,并基于企业的数据分析能力将他们分为领跑者、慢跑者、参与者和旁观者四个组别。同时,白皮书就企业在分析生命周期的三个关键阶段提出了快速将数据转变为洞察并驱动行动的建议,帮助企业在竞争中保持领先优势。
而对于企业来说,白皮书最大的意义在于明确的给出了目前全球企业在大数据部署方面的现状;并告诉企业,以目前的技术水平而言,在大数据方面的投入大约能够换来多少回报,有多少几率能让企业获得领先优势。
换句话说,白皮书给企业讲明白了三个重要问题:
1、 大数据解决方案的作用有多大
2、 别人企业的大数据都是怎么用的
3、 目前有多少企业愿意投资于大数据
而对于企业来说,把这三个问题讲清楚的意义远远大于单纯的大数据愿景描绘。
变革正在产生
IBM大中华区全球企业咨询服务部高级合伙人兼副总裁Steven Davidson发表演讲
在《分析:速度的优势》白皮书发布会上,IBM大中华区全球企业咨询服务部高级合伙人兼副总裁Steven Davidson表示:目前,大数据正在发生四个显著的变化。
1、大多数企业在一年之内就能够凭借在大数据上的投入而获得回报。这个数字在全球是63%,而在中国是75%。这说明大数据技术在中国的市场环境中更容易使企业获益。
2、在已经部署大数据相关解决方案的企业中,53%的企业用大数据技术来分析他们的客户,而另外40%左右的企业则使用大数据技术来优化运营效率。这说明扩展业务和优化运营仍是目前大数据应用的绝对主流方向。
3、有46%的受访企业正在将数字化渠道与传统销售渠道结合起来。换句话说,O2O已经不再是虚无缥缈的概念,而是实实在在发生在接近半数的企业中。
4、越来越多的企业正在将大数据解决方案关注的重点从数据的量上转移到数据的可靠性和处理速度上。因为越来越多的企业意识到,真正能够拉动业务的是那些准确的数据,以及基于这些准确数据进行的快速分析。
IBM大中华区全球企业咨询服务部合伙人、大数据和分析负责人 王明德发表演讲
对此,IBM大中华区全球企业咨询服务部合伙人、大数据和分析负责人王明德表示:无论大小企业,凡是能够大数据中获得准确分析结果并快速将其转化成为实际业务的企业都能够在市场上获得成功。而这需要企业在数据获取、数据分析和实际行动上都有所建树。
而目前,已经有很多中国企业通过大数据手段实现了业务层面的实际提升。
IBM大中华区全球企业咨询服务部副合伙人,大数据与分析中国区负责人谢国忠发表演讲
IBM大中华区全球企业咨询服务部副合伙人,大数据与分析中国区负责人谢国忠表示:通过全面的用户行为分析和对不同级别用户的详细描述,上汽集团的车享网已经将从访客到成交客户的几率提升了1%。而这1%所带来的却是总订单量提升11.3%和客户流失率降低3%。
大数据正当时
身为企业主,如果你觉得大数据离你还很遥远,《分析:速度的优势》的分析表明:你错了!
身为企业主,如果你觉得大数据不过是一些花哨的技术名词,没什么实际的作用;《分析:速度的优势》的分析表明:你错了!
身为企业主,如果你觉得大数据还仅仅是建个数据仓库而已;《分析:速度的优势》的分析表明:你错了!
大数据不仅仅是个技术名词,更是目前全球众多企业正在尝试的一种全新商业手段,而这种手段已经被证明十分有效。同时,随着技术的进步,大数据也在逐步发展变化;变得更快,也更强大。作为企业主,你所要做的就是抓紧时间,行动起来;从这份《分析:速度的优势》开始。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29