京公网安备 11010802034615号
经营许可证编号:京B2-20210330
统计学的七大支柱_数据分析师培训
JSM上统计界的老帮主Stephen Stigler做了一个主题演讲,讲“统计学的七大支柱”,好心又认真的Rick Wicklin同学记了笔记,彼时估计还在中国城吃饭的我才得以了解SS大人到底讲了什么。回头看看笔记,我觉得SS大人有点吹嘘统计学之嫌。所谓支柱,就是没了它咱就垮了。七大支柱为:
汇总:我们从数据汇总中获得知识。本小子认为汇总是统计的经典用途,但汇总(描述统计)只是统计学的一方面,另一个同样重要也相对更靠谱一些的方面是预测。我从来都是扬预测而抑汇总的,因为统计学生来就带有不靠谱的本性,汇总搞错了无从查证,预测错了一定程度上我们还是知道错了多远的。
边际效应递减:随着数据量增大,信息量并不是线性增加,而是到了一定程度之后可能就没太多新的信息了。SS大人用n(样本量)的平方根来形容这个递减,我觉得太牵强了,例如样本均值的标准误里有个n的平方根,但这跟信息有毛线关系呢?
似然/概率:概率论当然是统计学的支柱,当然也要取决于我们怎么定义统计学,但说概率是数理统计的基础肯定不会有人不同意。有人说统计是“研究不确定性的科学”,我现在最烦的就是“科学”二字,人人都把自己的工作升级为科学,尼玛什么是科学?我认为数学/数理统计可以是学科,但不是科学。要称自己的做的是科学,先问问那些养兔子和大肠杆菌的苦逼博士们再想想自己做的算不算科学。说自己研究的是一门学科又没什么丢人的,这年头神马“数据科学”,以及孟生旺老师讽刺的“数学科学学院”(一个名字里三个重复的字,直接叫“数学系”丢人吗?),都是一些没有底气的人才想出来的名词。我敬佩老老实实做实验的自然科学工作者,不是说用纸笔推公式的工作者做的是无意义的事情或者不苦逼,而是说没事不要在这些称谓上较劲,安分守己一点比较好。
横向比较:例如比较两样本均值的差异。SS大人讲别的学科是与“金标准”进行比较,而我们是在数据内部比较,如方差分析ANOVA和t检验。我没太明白这算什么支柱,而且统计里面也不是没有和“金标准”比较的情形啊。
回归和多元分析:身高的回归是经典例子了,这确实是一个有趣的发现,但现实中回归被用来做什么了呢?我感觉回归的主要作用是被铺天盖地的论文拿来当炮灰(你看,俺的方法比回归好),或者在外专业里面当万精油(你看,俺跑了个回归,系数显著耶)。与其说某种方法是支柱,不如说方法和领域知识的结合是支柱。没有具体的领域知识,跑个系数显著的回归只是盲人摸象。
试验设计:这个当然也很重要,我觉得这是七大支柱里唯一可以称为支柱的一个,因为它可以脱离领域知识而有效。没有比较就没有鉴别,大家都知道要比较,但怎么比是个关键问题。例如前些日子火爆的汉字听写大赛就违反了“随机”、“重复”、“对照”等试验设计基本原则,在缺乏概率指导下的竞赛,难免有些不公平。
模型和残差:这个有点局限于回归套路了,不是所有模型都涉及残差项的。若不检查残差的分布,统计学会不会垮掉?我认为未必。即使残差仍然有明显的特征,模型也未必完全不合适,这要看你想要获取模型中哪部分的信息。文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15