京公网安备 11010802034615号
经营许可证编号:京B2-20210330
统计学的七大支柱_数据分析师培训
JSM上统计界的老帮主Stephen Stigler做了一个主题演讲,讲“统计学的七大支柱”,好心又认真的Rick Wicklin同学记了笔记,彼时估计还在中国城吃饭的我才得以了解SS大人到底讲了什么。回头看看笔记,我觉得SS大人有点吹嘘统计学之嫌。所谓支柱,就是没了它咱就垮了。七大支柱为:
汇总:我们从数据汇总中获得知识。本小子认为汇总是统计的经典用途,但汇总(描述统计)只是统计学的一方面,另一个同样重要也相对更靠谱一些的方面是预测。我从来都是扬预测而抑汇总的,因为统计学生来就带有不靠谱的本性,汇总搞错了无从查证,预测错了一定程度上我们还是知道错了多远的。
边际效应递减:随着数据量增大,信息量并不是线性增加,而是到了一定程度之后可能就没太多新的信息了。SS大人用n(样本量)的平方根来形容这个递减,我觉得太牵强了,例如样本均值的标准误里有个n的平方根,但这跟信息有毛线关系呢?
似然/概率:概率论当然是统计学的支柱,当然也要取决于我们怎么定义统计学,但说概率是数理统计的基础肯定不会有人不同意。有人说统计是“研究不确定性的科学”,我现在最烦的就是“科学”二字,人人都把自己的工作升级为科学,尼玛什么是科学?我认为数学/数理统计可以是学科,但不是科学。要称自己的做的是科学,先问问那些养兔子和大肠杆菌的苦逼博士们再想想自己做的算不算科学。说自己研究的是一门学科又没什么丢人的,这年头神马“数据科学”,以及孟生旺老师讽刺的“数学科学学院”(一个名字里三个重复的字,直接叫“数学系”丢人吗?),都是一些没有底气的人才想出来的名词。我敬佩老老实实做实验的自然科学工作者,不是说用纸笔推公式的工作者做的是无意义的事情或者不苦逼,而是说没事不要在这些称谓上较劲,安分守己一点比较好。
横向比较:例如比较两样本均值的差异。SS大人讲别的学科是与“金标准”进行比较,而我们是在数据内部比较,如方差分析ANOVA和t检验。我没太明白这算什么支柱,而且统计里面也不是没有和“金标准”比较的情形啊。
回归和多元分析:身高的回归是经典例子了,这确实是一个有趣的发现,但现实中回归被用来做什么了呢?我感觉回归的主要作用是被铺天盖地的论文拿来当炮灰(你看,俺的方法比回归好),或者在外专业里面当万精油(你看,俺跑了个回归,系数显著耶)。与其说某种方法是支柱,不如说方法和领域知识的结合是支柱。没有具体的领域知识,跑个系数显著的回归只是盲人摸象。
试验设计:这个当然也很重要,我觉得这是七大支柱里唯一可以称为支柱的一个,因为它可以脱离领域知识而有效。没有比较就没有鉴别,大家都知道要比较,但怎么比是个关键问题。例如前些日子火爆的汉字听写大赛就违反了“随机”、“重复”、“对照”等试验设计基本原则,在缺乏概率指导下的竞赛,难免有些不公平。
模型和残差:这个有点局限于回归套路了,不是所有模型都涉及残差项的。若不检查残差的分布,统计学会不会垮掉?我认为未必。即使残差仍然有明显的特征,模型也未必完全不合适,这要看你想要获取模型中哪部分的信息。文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16