京公网安备 11010802034615号
经营许可证编号:京B2-20210330
统计学的七大支柱_数据分析师培训
JSM上统计界的老帮主Stephen Stigler做了一个主题演讲,讲“统计学的七大支柱”,好心又认真的Rick Wicklin同学记了笔记,彼时估计还在中国城吃饭的我才得以了解SS大人到底讲了什么。回头看看笔记,我觉得SS大人有点吹嘘统计学之嫌。所谓支柱,就是没了它咱就垮了。七大支柱为:
汇总:我们从数据汇总中获得知识。本小子认为汇总是统计的经典用途,但汇总(描述统计)只是统计学的一方面,另一个同样重要也相对更靠谱一些的方面是预测。我从来都是扬预测而抑汇总的,因为统计学生来就带有不靠谱的本性,汇总搞错了无从查证,预测错了一定程度上我们还是知道错了多远的。
边际效应递减:随着数据量增大,信息量并不是线性增加,而是到了一定程度之后可能就没太多新的信息了。SS大人用n(样本量)的平方根来形容这个递减,我觉得太牵强了,例如样本均值的标准误里有个n的平方根,但这跟信息有毛线关系呢?
似然/概率:概率论当然是统计学的支柱,当然也要取决于我们怎么定义统计学,但说概率是数理统计的基础肯定不会有人不同意。有人说统计是“研究不确定性的科学”,我现在最烦的就是“科学”二字,人人都把自己的工作升级为科学,尼玛什么是科学?我认为数学/数理统计可以是学科,但不是科学。要称自己的做的是科学,先问问那些养兔子和大肠杆菌的苦逼博士们再想想自己做的算不算科学。说自己研究的是一门学科又没什么丢人的,这年头神马“数据科学”,以及孟生旺老师讽刺的“数学科学学院”(一个名字里三个重复的字,直接叫“数学系”丢人吗?),都是一些没有底气的人才想出来的名词。我敬佩老老实实做实验的自然科学工作者,不是说用纸笔推公式的工作者做的是无意义的事情或者不苦逼,而是说没事不要在这些称谓上较劲,安分守己一点比较好。
横向比较:例如比较两样本均值的差异。SS大人讲别的学科是与“金标准”进行比较,而我们是在数据内部比较,如方差分析ANOVA和t检验。我没太明白这算什么支柱,而且统计里面也不是没有和“金标准”比较的情形啊。
回归和多元分析:身高的回归是经典例子了,这确实是一个有趣的发现,但现实中回归被用来做什么了呢?我感觉回归的主要作用是被铺天盖地的论文拿来当炮灰(你看,俺的方法比回归好),或者在外专业里面当万精油(你看,俺跑了个回归,系数显著耶)。与其说某种方法是支柱,不如说方法和领域知识的结合是支柱。没有具体的领域知识,跑个系数显著的回归只是盲人摸象。
试验设计:这个当然也很重要,我觉得这是七大支柱里唯一可以称为支柱的一个,因为它可以脱离领域知识而有效。没有比较就没有鉴别,大家都知道要比较,但怎么比是个关键问题。例如前些日子火爆的汉字听写大赛就违反了“随机”、“重复”、“对照”等试验设计基本原则,在缺乏概率指导下的竞赛,难免有些不公平。
模型和残差:这个有点局限于回归套路了,不是所有模型都涉及残差项的。若不检查残差的分布,统计学会不会垮掉?我认为未必。即使残差仍然有明显的特征,模型也未必完全不合适,这要看你想要获取模型中哪部分的信息。文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27