京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代对统计学和经济学有何影响
统计学具体不太了解, 大数据对经济学的影响如下:
短答案: 经济学界追求 causal inference 和 大数据追求的 predictive modeling 被广大经济学家认为有天壤之别, 所以大数据 (或者准确的说 statistical learning方法) 对目前经济学研究, 公共政策指定还没有实质性的帮助. 但是提供了不少实证方面的新思路新方法, 也对计量经济学提出新挑战 ( 社交网络数据 ). 未来障碍一个个突破后, 会有很大的应用.
经济学家是很追求效益的, 对于大的数据库肯定要尽可能的获取好处, 排除坏处. 大数据并不会替代常识, 经济学理论, 以及细致的研究设计. 大数据只会在这些方面进行弥补.
长答案:
1. 大数据的"大"
大数据最显著的特征就是 数据量大 ( large scope ) + 即时性 ( real time data )
比如: 你在超市收银机的数据, 网购的记录, 或者在线阅读( 比如在知乎的关注文章 ) 等等.
同时大数据时代带来了很多新的数据类型 (新在于对比以往经济学上运用的数据)
比如: 社交网络上发的微博或者朋友圈里所包含的文字数据 (这是以往经济分析中不太会使用的).
计量经济中的数据结构经常是矩阵型的, 也就是说通常收集 N 个观察项, K 个变量 (且 K << N)
大数据的数据结构显然不是这样, 很多情况下 K > N
计量中经常假设观察项之间是独立的, 但是在社交网络中观察项之间却是经常互相联结, 计量经济学未来在使用社交网络数据时如何处理这种观察项间的影响将成为一个关键.
2. 目前时髦的大数据应用: 预测建模 ( predictive modeling )
简而言之, 预测建模可以理解为: 已知 N 个观察 通过 K 个预测变量 来推导出相关性最强的 N 个结果.
大数据时代数据虽然丰富多了, 但是数据的质量却很容易下降.
比如: 纵使你有全国层次上百万级的观察项, 而你所研究的课题却是在市县层次. 容易造成大量不相关且描述不够详尽的数据.
而且这种统计方法面临一个权衡取舍:
在 K > N 的时候, 模型的样本外预测效果 ( out-of-sample performance ) 就会很差. 但是模型的样本内预测效果 (in-sample performance) 会很好.
而当经济学家考虑运用数据分析软件机器学习的方法时, 很容易想到卢卡斯批评( Lucas Critique ): 如果一个预测模型通过收集市场上已知的经济行为, 从而用来预测最优的政府干预政策时, 预测的结果可能并不准确, 因为预测出来的干预政策会改变市场的经济行为( 而这些正是和原模型中相关联的 )
3. 大数据时代已经为实证经济学研究提供了新的思路
美国统计局调查通货膨胀是使用派发问卷的方式, 回收的数据再分类到不同的通货膨胀指标中 (eg CPI). 大数据领域的 Billion Price Project ( BPP ) 运用实时的在线商店数据提供了一种 CPI 的替代指标 (这一指标在美国被验证 BPP 与 CPI 有很强的相关性).
其他的还有穆迪分析通过 MasterCard 和 Visa 的 Spending Pulse 来提供行业就业率的观测指标.
然而这些大数据还不够完美, 很显然这些数据的样本本身就不具有代表性. 比如: 利用 MasterCard 和 Visa 推导出的就业率指数首先就要求被调查者要至少有一张 MasterCard 或者 Visa.
4. 对经济学家的挑战
大数据分析: 公共领域以及政府数据是否容易获得.
数据管理以及编辑能力: 经济学家是否有能力快速的把大数据高效地应用在经济学思想.
最重要的, 急需开发出创新的数据总结, 描述和分析的方法.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21