
“大数据”时代 呼唤“大安全”_数据分析师
美国国家安全局(NSA)一直进行国内信息监视活动、已收集数以百万计的美国人的信息数据的消息被披露后,在国际上激起轩然大波,欧盟已经表示严重关切。传统上西方人对个人隐私有着更强烈的保护意识,也更敏感,于是一时就出现了乔治·奥威尔的小说《一九八四》热卖的景象,仿佛一个高高在上的“老大哥”确实在窥视公众。这场风波也缓解了中国的压力——斯诺登在香港“叛逃”并自曝“棱镜”计划内幕,一下子在网络安全问题上改变了中国和美国的攻守地位。
其实自从9·11恐怖袭击以来,美国情报机构在世界各地从事间谍活动,同时加强对本土公民的信息监控以搜寻与恐怖主义有关的信息,早已不是什么秘密,只是在过去人们难以窥视其内幕。而且,即使在更多情况被披露后,公众也很难证明政府的监控超出了法律许可的范围。所以,风波将会过去,问题将会留存。
世界正在进入一个“大数据”时代。英国人迈尔-舍恩伯格和肯尼斯?库克耶写的《大数据时代》认为,一个大规模生产、分享和应用数据的时代正在开始,大数据时代的口号是“一切皆可量化”,包括人们在社交网络上的沟通:Facebook的“社交图谱”将关系数据化;Twitter通过创新,让人们能轻易记录和分享他们零散的想法,从而实现了过去不可想象的情绪的数据化。
“大数据”时代也带来信息存储和管理的集中化。这两位作者写道,Facebook在2012年拥有大约10亿用户,他们通过上千亿的朋友关系网相互连接,这个巨大的社交网络覆盖了大约10%的全球人口,而这所有的关系和活动在数据化之后都为一家公司所掌控,这么一来,对“大数据”可能带来的风险的指责就不是空穴来风了。
你在谷歌上面的搜索记录,你最喜欢阅读哪些产品的广告,你对那种类型的旅游地最感兴趣,你通常去医院看哪些方面的病,人们在网上留下这些痕迹之后,企业就可以利用其中的信息,以分析消费者的行为、做出更好的决策,而这甚至对消费者有利,他们可望靠着企业对自身行为模式的了解,得到更为量身定做的服务。一方面企业和个人都享受了“大数据”时代带来的便利,但另一方面无处不在的“第三只眼”却似乎在监控着每个人的行动,带来权利与自由遭到侵犯的隐忧。
当信息公开产生害处的时候,单个、分散的消费者基本不会有什么动力去维护这些隐私,因为其价值太细微了。据报道,在西方,消费者信息监控已经发展为一项规模达几十亿美元的产业,其中的企业基本不受什么监管,而即使是有影响力的人物的个人信息,其卖价通常都不会超过一美元。在这种力量不平衡之下,手中掌握着更强大的数据分析能力的大公司,以及更强大的政府,就拥有了自由利用这些信息而不受监督的能力。
与此同时,信息管理规范的演进却没有跟上数据科技发展的步伐,包括保护个人信息的法律、行业规则与商业界的道德规范。在“大数据”时代之前,民众可以以保密的方式来保护隐私,但今天人们在不知不觉间就透露了隐私。而这就要求那些保存和管理信息的企业承担更大的责任,这应该成为一种新的隐私保护模式:政府不应假定消费者在使用企业的通讯工具等产品的时候主动透露了自己的隐私,就意味着他们授权企业使用这些隐私。“大数据”呼唤“大安全”。力量越大责任也越大,现在是那些作为“大数据”时代弄潮儿的大企业和政府部门负起他们的责任,构建一张更完善的安全网的时候了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12