
大数据时代的家居与地产行业变革_数据分析师培训
大家最近能够在各类媒体上看到,今年6月万科和百度签订战略合作协议,同月360投资花样年华地产旗下彩生活物业公司,8月万科和淘宝房产联合举办营销活动,按消费者在淘宝上的消费能力给予相应的房价折扣,而且这个折扣力度非常大。在8月底万达和百度、腾讯成立合资公司,共同向O2O方向发力。这一系列的商业地产企业和互联网公司的合作背后预示着什么?什么又是房产和家居行业的大数据?非常高兴能有机会和各位分享家装e站在企业和产业链数据战略上的一些思考。
大数据这两年流行的4V定义,分别是volume规模、velocity高速、variety多样性、value价值。单纯的数据集合和积累不是大数据,完整的大数据产业涵盖数据存储、技术分析、行业应用三个方面。
从数据采集与存储上来讲,我们所在行业的数据,分为用户特征数据、用户行为数据和环境数据。用户特征包括消费者性别年龄、地域、行业、消费能力、爱好等等能够清晰确定单一和群体消费者的数据字段。用户行为数据包括用户的浏览行为、搜索行为、用户位置的变化(LBS)、汽车路线和出入时间、线上和线下的购物行为。环境数据包括各类商业地产、住宅地产的位置、户型布局与面积、装修风格方案、智能设备等等对环境采集的数据、品牌商门店位置、陈列商品等等。以人的因素和环境因素对数据进行不同分类。在这里我要强调的是,第一,大数据是采集的全量数据而非单一数据。没有什么量变引起质变的概念,所有的商业行为都可以被信息化数据化,商业行为的结果也是多重变量共同影响的结果。第二,不讨论单一因素带来的因果关系。更多的要考虑各项数据之间变化的相关性。第三,数据采集过程中的偏差不可避免,我们的评价过程更多的看群体,而不追求微观上的精准。
从数据采集技术上来讲,家装e站在2014年以 天猫平台为核心,在截止8月份只有42个分站,年底预计150个分站的基础上,全年预计影响超过300万人次的家装消费者。2015年我们全国会有300个分站,以及供应链体系超过55个大仓的基础上,整合网络营销推广资源,预计全年会影响5000万人次的消费者。在官网上线以后,以 Hadoop、mysql集群、BI系统组成数据计算、存储、分析体系。对消费者装修过程中的家居数据进行充分的采样分析。未来我们会依据业务需求,对接政府、开发商、平台、品牌方数据体系。政府数据包括政府建委、房管局相关的交易数据;国家统计局相关的地产开发数据;国土资源部相关的土地市场数据。开发商数据包括各楼盘户型库、消费者信息,同时我们也向开发商和消费者提供设计资源、每户定制交付的精装修房系统、以及各地区行业户型、装修、用户偏好等数据支持,使开发商提供的楼盘产品更贴合消费者需求。另外,和阿里巴巴等平台对接,可以获得5亿用户的偏好、位置、消费能力等精准数据,对e站各分店、各家装行业品牌方等提供业务支撑数据和营销支持。
从数据应用的层面上来讲,短期内我公司数据主要为e 站各分站提供店面群体分析、营销优化、用户体验和效率提升的各项工作提供支撑。以行业兄弟平台齐家、美乐乐等为力,具有互联网整合能力的线上线下结合平台比单纯的线下门店坪效高4-5倍。前面提到的万科万达等公司希望利用的是商业地产所在城市的客户数据分析和经营优化。这还仅仅是大数据在行业的一个基础应用。未来家装e站会从三个方面提升公司数据价值。一是通过运营过程中的经验积累,人工建模,为各地产公司、建材家具家饰品牌提供数据支持。另一方向是通过人工智能,海量分析各类户型装修设计方案。以产品自动设计和在线3D云渲染技术为消费者提供各类基础的装修全套设计方案。包括平面顶面立面布置图、水电设计图、各类木作项目图纸,效果图等,完全替代基础的设计师工作。最后是通过装修行业设计施工等工作的数据化和信息化(移动设备和APP的实施),提升施工组织效率、供应链效率、消费者选购效率和信息获取效率。
接下来说一说目前地产家居行业大数据工作所处的时代。
一是数据分散。各机构、品牌、平台、装饰公司数据都未打通。二是对大数据的理念快于应用实施。三是数据分析技术传统,多是用于公司或机构内部优化,扩大了公司沉淀的数据量,没有整合行业应用的体系出现。但在家居地产行业信息化水平低下的同时,这部分工作也为行业大数据体系实施打下了基础。四是法律法规不健全,没有很好保护用户隐私和为各机构之间数据流转提供支撑。
最后,我们说一说这个行业的大数据工作如何改善和加强。
一是各企业继续加强数据管理工作。各企业充分的信息化,沉淀海量数据,改革组织架构,为企业互联网化提供支持。二是希望政府能够开放机构数据。哪怕是处理过的机构数据。为专业公司的飞速发展提供良好的保障。同时也对数据交换和数据安全立法,保障行业稳定持久运行。三是政府推进数据交易市场发展。由各开发商、品牌方提供数据内容,由各平台提供技术支持。由各品牌或者专业的数据处理公司进行数据分析和使用。政府不能仅仅是在各地建设数据中心,更重要的是提供整体的行业数据政策支持。
家装e站在地产与家居行业,希望能起到链接平台、消费者、地产公司、政府机构的数据对接任务,为市场发展尽一份力。同时也希望未来能成为装饰行业的中立的数据中心,成为千家万户的家庭智慧生活数据仓库。为各级地方政府的智能城市工作提供来自各家庭的数据基础和行业应用场景。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01