京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:杨强,华人界首个国际先进人工智能协会(AAAI)院士;华为诺亚方舟实验室主任, 香港科技大学计算机系教授; ACM杰出科学家。下面是杨强对大数据行业三个热门问题的解答。

我第一次听到“大数据”这个词是2011年在新加坡举行的一次美国科学院大数据讨论会。因数据采集费用的急剧下降,导致大量数据的产生,这一现象首次成为关注焦点。当时对数据的急剧增长意味着什么没有统一看法, 唯一认可的就是把这一现象命名为“大数据”。
今天,各行各业对大数据的理解各不相同。电信行业对“大数据到底能做啥?”至今没有定论。我之前有关大数据的文章发表后,读者提出很多疑问,因篇幅有限,选择三个关注度较高的问题来解答,抛砖引玉,供大家进一步讨论。
业界给大数据的定义为4个“V”,即体量大(Volume),种类多(Variety),速度快(Velocity),以及真实性高(Veracity)。如果仅仅看这几个维度,那么大数据就是炒作。因为它并未说明大数据的本质。大数据本质是通过数据加计算机可以带来一种像人一样的思维能力。这种能力在商业上的体现即为一种新的更好的商业运作模式。
诺亚方舟实验室在华为终端“智汇云”的应用,就是一个典型的大数据应用案例。智汇云是华为终端的一个云端商场,有上千万的用户和几十万的应用(APP),每个用户的习惯、兴趣、选择和卸载的应用都不一样。这些行为的数据总和为每个用户形成了一个独特的APP推荐问题:当用户再一次来到智汇云的时候,如何精准地向用户推荐他最想要的那些应用,而不是简单地把最流行的应用推荐给用户?
这个商业模式可以被非常明确地表达:“如何通过华为手机APP市场的大数据分析提高用户接受APP推荐的精准度,以提升华为终端的用户体验?”
最后我们利用数以万计的用户特征的多种维度,建立了一个非常精细的用户模型。其推荐效果比以往的智汇云提升了70%以上。
大数据应用成功的关键也正是要看我们有没有一个明确的商业(或科学)目的。这个商业模式的定义是必须的。
管道大数据和互联网大数据,到底谁是主导?区别是什么?各自的价值在哪里?这对于运营商和设备提供商来说,可能是有关大数据最纠结的问题了。
互联网和运营商的关系,可以用车和路的关系来理解。路上行驶的车辆可以看作是互联网,车上所装的货物和乘客及运输系统可以看作是互联网的数据和各种应用,而车辆所走的高速公路就类似于运营商提供的管道。对于互联网来说,它们更关心乘客和货物,及把人和货运到目的地。但从运营商的角度来说,它们更关心的是道路是否通畅。从这一点来说,互联网的数据是有关人和货物,而运营商的数据是车流量和道路拥塞程度。所以,互联网的数据是终端用户的数据,而运营商的数据是关于数据的数据。
关于数据的数据在电信行业意义重大。当然这有个前提:资源无论到何时都是有限的。
还拿车和路来比喻。如何为一些重要的常客开辟一条快速通道?你需要先知道哪些是重要的常客。哪些重要车辆公司在受对手高速路公司吸引,正在考虑换路?你需要分析这些公司的痛点在哪里。哪些地区需要新建高速路?你需要对各地位置及车流情况做分析(开拓运营商新业务)。哪些地区可以直接建高铁?你需要了解地区发展状况及所处阶段(对于成熟的运营商可以直接上5G)。
对数据分析的需求也随着运营技术的前进而提升。在5G场景下,我们需要给大众提供更密集、更快、更个性化的电信服务。那么,我们就要知道用户的使用规律、痛点、服务软肋在哪里。一个对你如影随行的高端服务并不是无数的服务员在所有你可能出现的地方等待,而是由一个聪明的服务员在你需要的时候及时出现。
未来的网络技术,如软件定义网络(SDN), 更需要大数据的支持:SDN的大脑,可以对网络大数据的深度挖掘所产生、修改、对未来端到端的通讯需求有精准的预测,不断从数据中学习。这样,整个网络就像我们人脑一样,变得越来越聪明。
大数据带来的变革只不过是计算机技术变革的其中一步。其变革过程和人类历史上其他重要变革一样,都要经过从资源(即:大数据)的原始积累,到商业和社会服务的差异化,再到人类对虚拟世界的行业和社会的再规范以解决公平合理的数据资源分配。当大数据及其技术的原始积累得到稳定以后,人们对之后的数字化应用将步入稳定状态。
以此推论,由大数据引发的下一代技术很可能是更大规模的、面向数字化行业的转变,这会让众多传统行业向数字世界全面或部分转化和融合。这个转变使得许多需要众多专家的领域将以另一种形式出现,也使得许多行业在整体“食物链条”的上下游有所改变。 比如,医生和科学家这样“高大上”的行业, 到那时会不会变成只负责数据采集和解释分析结果的 “工人”?或是成为在大数据驱动下智能机器人的伙伴?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21