
作者:杨强,华人界首个国际先进人工智能协会(AAAI)院士;华为诺亚方舟实验室主任, 香港科技大学计算机系教授; ACM杰出科学家。下面是杨强对大数据行业三个热门问题的解答。
我第一次听到“大数据”这个词是2011年在新加坡举行的一次美国科学院大数据讨论会。因数据采集费用的急剧下降,导致大量数据的产生,这一现象首次成为关注焦点。当时对数据的急剧增长意味着什么没有统一看法, 唯一认可的就是把这一现象命名为“大数据”。
今天,各行各业对大数据的理解各不相同。电信行业对“大数据到底能做啥?”至今没有定论。我之前有关大数据的文章发表后,读者提出很多疑问,因篇幅有限,选择三个关注度较高的问题来解答,抛砖引玉,供大家进一步讨论。
业界给大数据的定义为4个“V”,即体量大(Volume),种类多(Variety),速度快(Velocity),以及真实性高(Veracity)。如果仅仅看这几个维度,那么大数据就是炒作。因为它并未说明大数据的本质。大数据本质是通过数据加计算机可以带来一种像人一样的思维能力。这种能力在商业上的体现即为一种新的更好的商业运作模式。
诺亚方舟实验室在华为终端“智汇云”的应用,就是一个典型的大数据应用案例。智汇云是华为终端的一个云端商场,有上千万的用户和几十万的应用(APP),每个用户的习惯、兴趣、选择和卸载的应用都不一样。这些行为的数据总和为每个用户形成了一个独特的APP推荐问题:当用户再一次来到智汇云的时候,如何精准地向用户推荐他最想要的那些应用,而不是简单地把最流行的应用推荐给用户?
这个商业模式可以被非常明确地表达:“如何通过华为手机APP市场的大数据分析提高用户接受APP推荐的精准度,以提升华为终端的用户体验?”
最后我们利用数以万计的用户特征的多种维度,建立了一个非常精细的用户模型。其推荐效果比以往的智汇云提升了70%以上。
大数据应用成功的关键也正是要看我们有没有一个明确的商业(或科学)目的。这个商业模式的定义是必须的。
管道大数据和互联网大数据,到底谁是主导?区别是什么?各自的价值在哪里?这对于运营商和设备提供商来说,可能是有关大数据最纠结的问题了。
互联网和运营商的关系,可以用车和路的关系来理解。路上行驶的车辆可以看作是互联网,车上所装的货物和乘客及运输系统可以看作是互联网的数据和各种应用,而车辆所走的高速公路就类似于运营商提供的管道。对于互联网来说,它们更关心乘客和货物,及把人和货运到目的地。但从运营商的角度来说,它们更关心的是道路是否通畅。从这一点来说,互联网的数据是有关人和货物,而运营商的数据是车流量和道路拥塞程度。所以,互联网的数据是终端用户的数据,而运营商的数据是关于数据的数据。
关于数据的数据在电信行业意义重大。当然这有个前提:资源无论到何时都是有限的。
还拿车和路来比喻。如何为一些重要的常客开辟一条快速通道?你需要先知道哪些是重要的常客。哪些重要车辆公司在受对手高速路公司吸引,正在考虑换路?你需要分析这些公司的痛点在哪里。哪些地区需要新建高速路?你需要对各地位置及车流情况做分析(开拓运营商新业务)。哪些地区可以直接建高铁?你需要了解地区发展状况及所处阶段(对于成熟的运营商可以直接上5G)。
对数据分析的需求也随着运营技术的前进而提升。在5G场景下,我们需要给大众提供更密集、更快、更个性化的电信服务。那么,我们就要知道用户的使用规律、痛点、服务软肋在哪里。一个对你如影随行的高端服务并不是无数的服务员在所有你可能出现的地方等待,而是由一个聪明的服务员在你需要的时候及时出现。
未来的网络技术,如软件定义网络(SDN), 更需要大数据的支持:SDN的大脑,可以对网络大数据的深度挖掘所产生、修改、对未来端到端的通讯需求有精准的预测,不断从数据中学习。这样,整个网络就像我们人脑一样,变得越来越聪明。
大数据带来的变革只不过是计算机技术变革的其中一步。其变革过程和人类历史上其他重要变革一样,都要经过从资源(即:大数据)的原始积累,到商业和社会服务的差异化,再到人类对虚拟世界的行业和社会的再规范以解决公平合理的数据资源分配。当大数据及其技术的原始积累得到稳定以后,人们对之后的数字化应用将步入稳定状态。
以此推论,由大数据引发的下一代技术很可能是更大规模的、面向数字化行业的转变,这会让众多传统行业向数字世界全面或部分转化和融合。这个转变使得许多需要众多专家的领域将以另一种形式出现,也使得许多行业在整体“食物链条”的上下游有所改变。 比如,医生和科学家这样“高大上”的行业, 到那时会不会变成只负责数据采集和解释分析结果的 “工人”?或是成为在大数据驱动下智能机器人的伙伴?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05