京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“天下大同”才是大数据的理想归宿_数据分析师
“大同”原本是中国古代的思想,指人类最终可以达到的理想世界,代表着人类对未来社会的美好憧憬。现代又加入了全球范围内的政治、经济、科技、文化融合的思想。而今正流行的“大数据”,其理想模式也是“天下大同”,最终才能更好的发挥大数据的效能,并最终实现大数据的共治共享。
然而现实世界中,要实现大数据的共治共享似乎有点“天方夜谭”,最典型的例子就是巨头们都在叫嚣着大数据,但往往又出于商业利益的考量,谁都希望守住自家的一亩三分地,不愿意将自家的数据积累共享,甚至连平台接口协议共享实现都不易。
我们都知道Fitbit之前就曾表态过,其产品不会支持苹果的Apple Store平台,数据也不能实现共享,自然和Apple Health就无法同步。结果可想而知,强势的一方苹果公司要求Fitbit公司的应用全部从Apple Store下架,而这仅仅只是APP应用平台和APP应用之间的故事。
在另一个流行的领域“车联网”中,数据的共享同样是难中之难,而且目前也因此而导致目前车联网发展举步维艰。作为汽车的主导者,汽车公司基于安全以及自身商业利益的考量,自然也不愿意将车联网的核心数据共享出去,顶多友情开放一些无关紧要的数据。而车联网产业链条的各方仅能得到有限的数据,弃之可惜,但是即便都收集起来也没多大的实际意义。最终可悲的是,汽车企业尽管也在美其名曰的主导和推行自家品牌的车联网,但车联网始终放在自家品牌之后,都是站在为汽车品牌服务的角度,重点在于售车,其主导的车联网也是自家品牌的联网,和其他品牌的汽车无关,甚至和车联网链条的其他企业亦无关。但车联网的最终实现又必须是人、车、路多方的数据共享和协同,车企自身的车联网充其量也就是一个“过家家”的游戏罢了。
除了APP应用平台和APP之间的故事,车联网产业链关于数据的故事,时下iOS和Android两大系统的大战和数据兼容也是一大难题。对于APP开发者来说,同样的应用必须开发适配iOS和Android两个系统的不同版本。不过更为头疼的是两大系统之间的数据同步和共享问题,因为两方企业基于商业利益的竞争,谁都不愿意妥协和让步,也都不愿意放开自己的用户和数据。
然而尽管企业有企业的商业利益考量,企业有企业的自建屏障进行保护,但数据的共享和协同终究是大趋势。
关于Fitbit数据和Apple Health同步问题有了更好的解决方式。Fitbit数据可以通过第三方数据和Apple Health实现同步,此举自然是可喜的一大步,总有一种力量在推动着大数据的共享。
而关于车联网间的数据共享问题,目前也有着介于“法律边界红线边缘”的处理方式,即有第三方公司通过破解can协议和网关的方式取得汽车数据,并最终“分享”给车联网的产业链。尽管手段有待商榷,但确确实实在助推汽车公司走向更加开放。
iOS和Android数据共享和数据整合则应该交给新的创业型公司,总会有惊喜。iOS和Android的数据共享也是一大刚需和大市场,有理由值得期待。
然而,事情的发展总会损伤到既得利益者的固有利益和脆弱心里,既得利益者必然会防抗。但不管怎么样,笔者不太希望现实世界里,平台太多,“数据”不够用的“杯具”继续。过多相互有意隔绝的平台,势必会造成未来大量的产生的数据,却又人为地产生大量不兼容、不互通、不可二次利用的问题。每个投身期间的大小企业,都惦记着用自己的产品和数据格式和协议,形成竞争壁垒,然后党同伐异都算奢望,每家企业都想着凭借数据制霸天下。
如此,最终大数据终将成为空中楼阁,很难造福人类。前文说到的车联网也就只能成为各家车企内部的局域网,离人、车、路的协同越来越遥远。
有需求的地方,自然就会有商机,自然也会产生新的创业公司和创业智慧。第三方的同步和兼容工具,就极有可能成为一个衍生应用市场。尽管各路衍生应用市场和原有平台诸侯也一定会在捍卫自己的“江山”的过程中打个你死我活。但最终,肯定会有非常少量的平台最终成为数据协同和整合共享标准,推动大数据的“大同”。
当车联网、跨系统平台不再是梦,而是现实的时候,大数据的“天下大同”就开始迈出了实质性的步伐。革命尚未成功,第三方应用,第三方数据协同平台们仍需努力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26