
浅谈谁需要大数据_数据分析师培训
没有产生多大的贡献,很可能永远也无法产生成效。
问题出在哪里?首先,大数据已过度炒作,很多公司期待这些数据提供的价值,高于数据实际可以产生的价值。此外,分析软件产生的见解很容易复制。如我们研究的某家银行,根据大数据分析建立一个模型,可用来找出设置提款机的最佳地点,但他们後来发现,已经有一些顾问为别家银行建立了类似的模型。此外,把数据分析产生的见解转变成竞争优势,可能需要企业做一些改变,但企业本身不见得能做到。
不过,大数据投资没有效果的最大原因,在于大多数公司并未善用他们本来就有的资讯。他们不知道该如何管理那些资讯,分析资讯以了解相关情况,然後根据新的见解做出改变。公司不会因为花大钱投资精密的分析工具,就神奇地培养出那些能力。
数位经济的重点,在于获取、分析、运用资讯,以服务顾客。大多数公司只要根据营运数据来做日常决策,就能大幅改善营运绩效。但为什么没看到有更多公司善用数据和分析?可能的原因之一,是他们的管理实务尚未跟上科技平台的发展。
研究显示,具备证据导向决策文化的公司,会让所有决策者每天随时取得绩效数据。他们也会采行四种做法:建立一个无争议的绩效数据来源;提供各层级决策者几近即时的意见回馈;清楚讲明商业规则,并经常因应事实加以更新;为经常做决策的员工,提供优质的指导和训练。
深入探索这些做法以前,先看一家从创立以来就具备证据导向决策文化的公司。
南方公司最知名的就是率先推出7-Eleven便利商店连锁系统的概念。1970年代,他们把日本便利商店的事业分割出去,成为日本7-Eleven。首任执行长铃木敏文(Toshifumi Suzuki)很早就认定,便利商店的获利关键,在于迅速的存货周转率,所以他把下订单这个最重要的业务决定,交给便利商店的二十万名店员来负责,而他们大多是兼职销售人员。铃木敏文认为这些店员了解顾客,也握有最佳的资讯,最懂得判断什么东西可以迅速出售。
为了帮助店员做决策,他把每日销售报告和天气预测之类的补充数据,一并传给每家便利商店。报告中详列前一天卖出什么、去年同一天卖出什么、上次天气状况相似时卖出什么、其他分店卖出什么。日本的7- Eleven也卖生鲜食品,因此铃木敏文安排每天补货三次,让店员可以根据即时需求来下单。他也让店员接触供应商,鼓励他们开发适合当地客群口味的商品。结果,三十多年来,7-Eleven一直是日本获利最好的零售商.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08