京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈谁需要大数据_数据分析师培训
没有产生多大的贡献,很可能永远也无法产生成效。
问题出在哪里?首先,大数据已过度炒作,很多公司期待这些数据提供的价值,高于数据实际可以产生的价值。此外,分析软件产生的见解很容易复制。如我们研究的某家银行,根据大数据分析建立一个模型,可用来找出设置提款机的最佳地点,但他们後来发现,已经有一些顾问为别家银行建立了类似的模型。此外,把数据分析产生的见解转变成竞争优势,可能需要企业做一些改变,但企业本身不见得能做到。
不过,大数据投资没有效果的最大原因,在于大多数公司并未善用他们本来就有的资讯。他们不知道该如何管理那些资讯,分析资讯以了解相关情况,然後根据新的见解做出改变。公司不会因为花大钱投资精密的分析工具,就神奇地培养出那些能力。
数位经济的重点,在于获取、分析、运用资讯,以服务顾客。大多数公司只要根据营运数据来做日常决策,就能大幅改善营运绩效。但为什么没看到有更多公司善用数据和分析?可能的原因之一,是他们的管理实务尚未跟上科技平台的发展。
研究显示,具备证据导向决策文化的公司,会让所有决策者每天随时取得绩效数据。他们也会采行四种做法:建立一个无争议的绩效数据来源;提供各层级决策者几近即时的意见回馈;清楚讲明商业规则,并经常因应事实加以更新;为经常做决策的员工,提供优质的指导和训练。
深入探索这些做法以前,先看一家从创立以来就具备证据导向决策文化的公司。
南方公司最知名的就是率先推出7-Eleven便利商店连锁系统的概念。1970年代,他们把日本便利商店的事业分割出去,成为日本7-Eleven。首任执行长铃木敏文(Toshifumi Suzuki)很早就认定,便利商店的获利关键,在于迅速的存货周转率,所以他把下订单这个最重要的业务决定,交给便利商店的二十万名店员来负责,而他们大多是兼职销售人员。铃木敏文认为这些店员了解顾客,也握有最佳的资讯,最懂得判断什么东西可以迅速出售。
为了帮助店员做决策,他把每日销售报告和天气预测之类的补充数据,一并传给每家便利商店。报告中详列前一天卖出什么、去年同一天卖出什么、上次天气状况相似时卖出什么、其他分店卖出什么。日本的7- Eleven也卖生鲜食品,因此铃木敏文安排每天补货三次,让店员可以根据即时需求来下单。他也让店员接触供应商,鼓励他们开发适合当地客群口味的商品。结果,三十多年来,7-Eleven一直是日本获利最好的零售商.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06