京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析技术将用于推进文化资源管理_数据分析师培训
近年来,随着互联网、物联网、云计算、三网融合等技术的发展,大数据(Big Data)及其挖掘利用问题,成为了产业界、学术界与政府部门各方面关注的热门话题,并正在从不同方面促进着我们的生活、工作和思维方式的改变。如何加强对具有文化内涵和特征的大数据的利用,也是需要我们,特别是从提高对各类文化资源管理和利用水平的角度,进一步加以关注的问题。
什么是大数据
所谓大数据是指数据量大。但究竟怎样的量才算大,目前并没有统一的定义。一般认为,大数据的数量级至少应该达到“太字节”(Terabyte, TB)以上。因为达到了这个量级以上的数据,利用现有IT技术和软硬件工具将难以实现在可容忍的时间内,对其进行有效的感知、获取、管理、处理和利用,必须要开发新的数据管理和处理软硬件技术,才能满足应用需求。
除了数据量浩大外,大数据还有两个特点,一是模态繁多,包括结构化数据、半结构化数据和非结构化数据;二是生成快速,大数据往往以数据流的形式动态、快速地产生,具有很强的时效性,用户只有把握好对数据流的掌控才能有效利用这些数据,充分挖掘其中的价值。
从战略高度重视文化资源管理
关于文化资源及其管理的内涵,学术界有着不同的认识。按照维基百科的解释,所谓文化资源管理(Cultural Resource Management, CRM)是针对任何与文化相关的资产的管理,主要包括历史的、技术的、社会的、建筑的或科学价值的文化遗产等,也包括当代的、创新的科技与文化资产。
由此可以看出,对于一个国家和民族来讲,文化资源是其文明发展的历史过程中沉积形成的独有资产,具有唯一性和不可扩展性等特点,因此,具有不可估量的文化、经济、社会价值和意义,是代表一个国家文化软实力的核心内容和象征要素,也是各类文化艺术产品创作的基础资料和源泉。所以,我们应该从战略的高度来重视文化资源的管理和保护问题。
用大数据技术推进文化资源管理
仅从数据量大这一特点,可将大数据分为两类,一类是基于互联网、物联网而不断快速、随机产生的大量多形态的数据,可称为非结构化数据或随机大数据;另一类则是按照一定的计划和规则,有意识地采集的大量具有不同形态的数字化信息和数据,可称为结构化数据或有序大数据。从文化资源管理的角度看,这两类大数据都存在,并具有很大的利用价值。
其中一类大数据是由大量的网络搜索、下载、点击、上传等而形成的随机大数据。对这些数据进行挖掘分析的一个基本用途之一,就是对文化消费行为的分析。
通过对不同互联网用户群体的文化消费特点和偏好的分析,将有利于更全面地了解各类文化产品、文化活动的市场需求,更有针对性地开发创作相关内容、形式的文化产品,以满足各类消费者的需要,这对于提高文化产业的生产效率是具有重要意义的。
另一类大数据是有计划地采集的各类历史文化资源数字化信息。对这类数据的有效管理和充分挖掘、利用,或许是大数据及其分析技术更为重要的应用角度和需求。
随着数字化技术在文化资源管理中的应用,各类博物馆、图书馆,以及其他社会组织,都在对各类物质与非物质文化遗产开展数字化保护工作,以便更好地实现对历史文化资源的保护、保存和利用。
这些数字化文化资源信息的不断产生和完善,在客观上为我们建立了一个庞大的、具有大数据特征的数据库和资源库的同时,为我们进一步加强对中华民族的社会、文化发展历史和特点的系统研究,加深对中华文化精髓的认知,辨识“基因”,延续文脉,确定我国文化建设应加强保护、传承、传播的中华文化重点内容,制定国家文化发展战略,提供了前所未有的基础和条件,从而不但可以大大提高我们对于中华文化内涵、特点和历史的研究效率,更有可能实现与得到很多仅依靠传统的研究方法所无法得到的,甚至难以想象的效果和结果。
但由于这些数据资源分散在不同的单位、部门,又没有统一的格式标准,能否在现行体制下,采用技术手段,按照一定的共享共建机制,通过一个实际或虚拟数据交汇中心或平台的构建,整合各类数据资源,并在此基础上,进一步发挥计算机中文信息处理、模式识别、知识挖掘等大数据分析技术的优势,面向各类文化研究、文化艺术创作、文化管理等用户提供更为优质、高效的信息服务,便成为了一个值得文化与科技相关领域共同探讨和推进的任务。
为了实现以上文化资源管理目标,更好地发挥大数据分析技术的优势,促进文化发展,除应鼓励各类文化信息数据拥有部门、企业,结合需求加强对相关软、硬件及应用系统的开发外,通过实施跨部门的“中华文化资源保护与传承促进工程”等方式,在促进相关文化资源数据信息资源建设的同时,促进大数据分析相关先进信息技术的应用,加强对于中华文化的系统研究和传承利用。这对于推动文化体制改革、提升我国文化资源管理与利用水平、加强文化建设、促进文化产业发展、保障文化安全都将具有重要的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05