京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据“乱政” 缺乏判断或成有害资产_数据分析师培训
经过几年的发展,大数据不仅改变了普通人的生活习惯,而且对企业的战略规划起着决定性影响。然而,如果大数据由于运用不当而侵犯用户隐私被称为“数据暴政”,那么大数据判断失误造成企业决策失误则可以被称为“数据乱政”。
“大数据对企业决策的影响不应该被过分夸大,尤其是在数据质量和数量不能保证的情况下,企业决策更加离不开丰富的经验和准确的市场判断。”北京能源投资集团副总裁刘国忱在日前举行的“中国2013(首届)CIO(首席信息官)论坛”上说。
大数据与董事会
通过物联网、云计算、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,大数据正在以任何行业无法望其项背的速度增长着。 IBM的统计数据表明,目前90%以上的数据都是两年之内产生的,2012年的数据总量已经是10年前的2亿倍。
“亚马逊是最早专注大数据的公司之一,在这家公司的各种会议上,没有人会说‘我认为’,而是说‘数据’认为。利用自身海量的用户信息和积累的大数据,亚马逊可以为商家提供精准营销和个性化广告推介等。”一位接近亚马逊的人士告诉《中国企业报》记者。
就大数据对于企业发展的推动作用而言,企业营销的优化只是基础性的,最大的价值则在于对企业战略决策的支撑。因为传统企业决策流程是从出现问题到调整方向,而大数据背景下则可以转变为数据分析、数据问题。
目前,IBM等公司就在致力于为企业提供“硬件+软件+数据”的整体解决方案,更多的企业则通过设立CIO来负责为决策层提供市场数据和分析。阿里巴巴原CEO马云退休之后选择原CIO陆兆喜继任,更是突显了企业战略发展对数据的依赖。
不过,仍有相当多的企业战略都是依靠决策者个人的经验和直觉等主观因素做出的,这种方式正在遭受新兴的以大数据为支撑的客观依据的挑战。
达芙妮集团副总裁、CIO梁海璇在接受《中国企业报》记者采访时表示,目前相当一部分传统企业对于大数据的发展不够重视,甚至根本没有设置CIO,或者设置了CIO却没有发挥作用,归根到底跟CEO对大数据的理解程度有关。
警惕大数据乱政
然而,在如今信息大爆炸的时代,企业又容易对海量的数据感到困惑,他们看到的只是破碎的、零散的、局部的数据,如何通过技术对大数据进行分门别类并附以各种算法,最终提炼出有价值的数据却是难于上青天。
“数据是一种资源,但是需要经过科学的筛选、分析才能成为企业的资产,如果不能这样很好地应用则就会变成不良资产,这不但是资源的一种浪费,更重要的是可能会误导企业的发展战略。”用友金融信息技术有限公司董事总裁李友认为。
实际上,大数据的出现并不是新鲜事,微软亚太研发集团董事长张亚勤早前也说过,之所以现在受到越来越多的重视,数据分析的算法和理论趋于成熟是重要的原因,因为只有数据分析技术的成熟才能保证大数据的价值得到真正的挖掘。
需要指出的是,对于同一个数据,不同的人也会有不同的看法。调查表明,对同一个数据,人们通常更加倾向于乐观的看法,而有意回避悲观的可能。
以其所在的能源行业为例,刘国忱举例说,去年虽然多数能源企业都对市场做了大量的调研,由于决策者更加信任当前有利的市场数据,回避了国际经济复苏缓慢、国内经济增长放缓等负面因素,轻易提高产能,最终造成目前严重的产能过剩。
刘国忱表示,大数据的发展虽然对企业决策提供了重要的依据,推动了企业战略决策的变革,但是企业决策仍然离不开决策者个人的丰富经验和领导能力,目前企业最为紧缺的仍然是数据研究和业务发展都精通的复合型人才。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10