
大数据“乱政” 缺乏判断或成有害资产_数据分析师培训
经过几年的发展,大数据不仅改变了普通人的生活习惯,而且对企业的战略规划起着决定性影响。然而,如果大数据由于运用不当而侵犯用户隐私被称为“数据暴政”,那么大数据判断失误造成企业决策失误则可以被称为“数据乱政”。
“大数据对企业决策的影响不应该被过分夸大,尤其是在数据质量和数量不能保证的情况下,企业决策更加离不开丰富的经验和准确的市场判断。”北京能源投资集团副总裁刘国忱在日前举行的“中国2013(首届)CIO(首席信息官)论坛”上说。
大数据与董事会
通过物联网、云计算、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,大数据正在以任何行业无法望其项背的速度增长着。 IBM的统计数据表明,目前90%以上的数据都是两年之内产生的,2012年的数据总量已经是10年前的2亿倍。
“亚马逊是最早专注大数据的公司之一,在这家公司的各种会议上,没有人会说‘我认为’,而是说‘数据’认为。利用自身海量的用户信息和积累的大数据,亚马逊可以为商家提供精准营销和个性化广告推介等。”一位接近亚马逊的人士告诉《中国企业报》记者。
就大数据对于企业发展的推动作用而言,企业营销的优化只是基础性的,最大的价值则在于对企业战略决策的支撑。因为传统企业决策流程是从出现问题到调整方向,而大数据背景下则可以转变为数据分析、数据问题。
目前,IBM等公司就在致力于为企业提供“硬件+软件+数据”的整体解决方案,更多的企业则通过设立CIO来负责为决策层提供市场数据和分析。阿里巴巴原CEO马云退休之后选择原CIO陆兆喜继任,更是突显了企业战略发展对数据的依赖。
不过,仍有相当多的企业战略都是依靠决策者个人的经验和直觉等主观因素做出的,这种方式正在遭受新兴的以大数据为支撑的客观依据的挑战。
达芙妮集团副总裁、CIO梁海璇在接受《中国企业报》记者采访时表示,目前相当一部分传统企业对于大数据的发展不够重视,甚至根本没有设置CIO,或者设置了CIO却没有发挥作用,归根到底跟CEO对大数据的理解程度有关。
警惕大数据乱政
然而,在如今信息大爆炸的时代,企业又容易对海量的数据感到困惑,他们看到的只是破碎的、零散的、局部的数据,如何通过技术对大数据进行分门别类并附以各种算法,最终提炼出有价值的数据却是难于上青天。
“数据是一种资源,但是需要经过科学的筛选、分析才能成为企业的资产,如果不能这样很好地应用则就会变成不良资产,这不但是资源的一种浪费,更重要的是可能会误导企业的发展战略。”用友金融信息技术有限公司董事总裁李友认为。
实际上,大数据的出现并不是新鲜事,微软亚太研发集团董事长张亚勤早前也说过,之所以现在受到越来越多的重视,数据分析的算法和理论趋于成熟是重要的原因,因为只有数据分析技术的成熟才能保证大数据的价值得到真正的挖掘。
需要指出的是,对于同一个数据,不同的人也会有不同的看法。调查表明,对同一个数据,人们通常更加倾向于乐观的看法,而有意回避悲观的可能。
以其所在的能源行业为例,刘国忱举例说,去年虽然多数能源企业都对市场做了大量的调研,由于决策者更加信任当前有利的市场数据,回避了国际经济复苏缓慢、国内经济增长放缓等负面因素,轻易提高产能,最终造成目前严重的产能过剩。
刘国忱表示,大数据的发展虽然对企业决策提供了重要的依据,推动了企业战略决策的变革,但是企业决策仍然离不开决策者个人的丰富经验和领导能力,目前企业最为紧缺的仍然是数据研究和业务发展都精通的复合型人才。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23