
大数据“乱政” 缺乏判断或成有害资产_数据分析师培训
经过几年的发展,大数据不仅改变了普通人的生活习惯,而且对企业的战略规划起着决定性影响。然而,如果大数据由于运用不当而侵犯用户隐私被称为“数据暴政”,那么大数据判断失误造成企业决策失误则可以被称为“数据乱政”。
“大数据对企业决策的影响不应该被过分夸大,尤其是在数据质量和数量不能保证的情况下,企业决策更加离不开丰富的经验和准确的市场判断。”北京能源投资集团副总裁刘国忱在日前举行的“中国2013(首届)CIO(首席信息官)论坛”上说。
大数据与董事会
通过物联网、云计算、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,大数据正在以任何行业无法望其项背的速度增长着。 IBM的统计数据表明,目前90%以上的数据都是两年之内产生的,2012年的数据总量已经是10年前的2亿倍。
“亚马逊是最早专注大数据的公司之一,在这家公司的各种会议上,没有人会说‘我认为’,而是说‘数据’认为。利用自身海量的用户信息和积累的大数据,亚马逊可以为商家提供精准营销和个性化广告推介等。”一位接近亚马逊的人士告诉《中国企业报》记者。
就大数据对于企业发展的推动作用而言,企业营销的优化只是基础性的,最大的价值则在于对企业战略决策的支撑。因为传统企业决策流程是从出现问题到调整方向,而大数据背景下则可以转变为数据分析、数据问题。
目前,IBM等公司就在致力于为企业提供“硬件+软件+数据”的整体解决方案,更多的企业则通过设立CIO来负责为决策层提供市场数据和分析。阿里巴巴原CEO马云退休之后选择原CIO陆兆喜继任,更是突显了企业战略发展对数据的依赖。
不过,仍有相当多的企业战略都是依靠决策者个人的经验和直觉等主观因素做出的,这种方式正在遭受新兴的以大数据为支撑的客观依据的挑战。
达芙妮集团副总裁、CIO梁海璇在接受《中国企业报》记者采访时表示,目前相当一部分传统企业对于大数据的发展不够重视,甚至根本没有设置CIO,或者设置了CIO却没有发挥作用,归根到底跟CEO对大数据的理解程度有关。
警惕大数据乱政
然而,在如今信息大爆炸的时代,企业又容易对海量的数据感到困惑,他们看到的只是破碎的、零散的、局部的数据,如何通过技术对大数据进行分门别类并附以各种算法,最终提炼出有价值的数据却是难于上青天。
“数据是一种资源,但是需要经过科学的筛选、分析才能成为企业的资产,如果不能这样很好地应用则就会变成不良资产,这不但是资源的一种浪费,更重要的是可能会误导企业的发展战略。”用友金融信息技术有限公司董事总裁李友认为。
实际上,大数据的出现并不是新鲜事,微软亚太研发集团董事长张亚勤早前也说过,之所以现在受到越来越多的重视,数据分析的算法和理论趋于成熟是重要的原因,因为只有数据分析技术的成熟才能保证大数据的价值得到真正的挖掘。
需要指出的是,对于同一个数据,不同的人也会有不同的看法。调查表明,对同一个数据,人们通常更加倾向于乐观的看法,而有意回避悲观的可能。
以其所在的能源行业为例,刘国忱举例说,去年虽然多数能源企业都对市场做了大量的调研,由于决策者更加信任当前有利的市场数据,回避了国际经济复苏缓慢、国内经济增长放缓等负面因素,轻易提高产能,最终造成目前严重的产能过剩。
刘国忱表示,大数据的发展虽然对企业决策提供了重要的依据,推动了企业战略决策的变革,但是企业决策仍然离不开决策者个人的丰富经验和领导能力,目前企业最为紧缺的仍然是数据研究和业务发展都精通的复合型人才。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12