
大数据时代的危害性与局限性_数据分析师
2月3日消息,白宫去年曾发表书面声明称,“大数据将作为历史性的驱动因素,帮助美国持久性地促进社会与经济活力”,其创造的社会价值与经济价值得以遵从该国提倡的“隐私、公正、平等、自主”。然而事实真的如此吗?大数据时代的危害性与局限性又是否会赶超其效益性?
某知名评论人表示,白宫这一努力平衡大数据成本与收益的举措,实则阻碍了其长远发展的大局观。此外,雅虎首席执行官玛丽萨·梅耶尔(Marissa Mayer)表示,数据驱动技术仅仅是政府、工业企业、民间社会做出重大决定的因素之一,而误用或滥用数据甚至比无数据所造成的结果更糟糕。
梅耶尔还指出,其公司内部许多人总是不断收集并解释某些数据,这不仅会导致另外一些重要因素的缺失,还会使被测算的系统发生不好的转变。
不当负担
大数据到底是否利大于弊并不是我们现阶段所关心的问题,而能否识别其益处的非显性局限才是技术人员最应该关注的。
大数据支持者的核心主张是,但凡数据,必定有正面价值。然而这个想法是错误的,对公司管理层而言,看起来似乎无伤大雅的信息搜寻,却往往对数据收集的主体带来了不当负担。
比如,全球大学排名与联邦量刑指南是两大复杂社会系统演变而成的量化值,该方面的相关人员均表示,这样的全方位大数据归集整理无疑损害了他们原本系统的秩序。
而第一个提出“大数据时代”这一概念的麦肯锡公司(McKinsey)也曾坦言,“事实上,截至目前,并没有有效的证据表明数据的强度与特定部门生产力之间存在一定积极的联系。”在随后的几年内,尽管信息量化的浪潮已开足马力,但相关证据依然少之又少。
易被操控
数据往往比人们想象的更易被操控。据Target前经理表示,公司管理部门曾尝试通过收集分析顾客问卷打分表以期提升顾客满意度,然而此举却造成员工伪造客户信息以夸大自己的工作表现。不受监管的可编制数据一旦被伪造,那么用它分析出的结果便不具任何意义。
而先前拥有自主执行权的负责数据编制的员工,此时却倍感压力重重,因为他们不得不接受不间断的中央监控。
不可量化
许多重要的问题是根本不适合也无法定量分析的,它们需要对价值、驱动力、所处环境及其他种种核心因素的评判。而找到一个绝对中立不偏不倚并受众人尊重信任的人,制定量化指标来对所有因素进行评定打分,是决计无法实现的。这便是一切社会机制中固有的难题。
衡量知识?
新基础科学知识对经济结构的影响过于分散和复杂,经济学家很难进行量化衡量。
当然,社会和经济制度的定量分析在最近几年存在系统性的缺陷,但这并不意味着未来的深入研究会遭遇同样的短板。然而,若是沿袭相同的基础方法论,那么即便收集再多的数据,这些缺陷也将持续存在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23