
大数据透析P2P平台跑路真正原因_数据分析师培训
跑路,P2P平台难以摆脱的梦魇,到底是“道德败坏”还是“大势所趋”?只是揣测是不行的,与真相帝拿起显微镜,透析一下P2P平台跑路的真正原因。
一、借款人态度
真相帝通过对接近50位真实借款人(限于时间和资源有限)的调研,类型大致可以分为下面几类:
1.无所谓,只要借款人能拿到借款,透露也没什么关系,有真实的实体经营,真实的资料,你来实地考察还能给他打打广告,但这只占6%的比例。
2.可以公开,但不涉及隐私,也就是说借款资料什么的完全可以公开,但只要不涉及借款人的联系方式,不知道借款人是谁就可以,这类人群比重将近66%。
3.完全不公开,他们的理念是借款人只是和投资人发生了借贷关系,没必要把他借贷的事情搞的全世界都知道。此类型占到28%。
4.自融平台不加讨论,不真实,更没有透明可言。
由上面数据得出结论。相对来说只要是真实借款人,只要不涉及自己私人信息。借款信息的披露他们是持无所谓状态,他们要的只是能借款,解决自己的问题。
二、平台借款信息的披露
1.20%的平台对于借款用户的信息是完全对外公布的。
2.50%的平台对于借款用户的信息是没有对外公布的。
3.20%的平台是资料不全,或解释没有放上去,资料公司是有的。
4.10%的平台有资料,但填充假的可以。甚至评估15万的车能贷款20万。
真相帝调研了将近100家平台,信息公布完整的多数为上市公司参股平台,以及真正有心做好P2P业务的平台,占20%。其他多为公布不完全或者不公布,不排除排名前10的平台,信息为什么不公布,投资人可以发挥无限的想象力。作者不做评论与猜想。
三、投资人对于借款信息的态度
真相帝对于投资人的调研结果真的是啼笑皆非,下面看看你们属于那一种。
1.跟风型:看到身边人投资了就去投资,不管项目利率的高低,不管项目的真实性,死跟,对项目真实性和透明完全没有概念。
2.盲目崇拜型:对于那种数一数二的平台,盲目的崇拜投资,无谓时间长短,无谓项目利率高低,无谓项目的真实与否,信平台得永生,管有没有资料呢。
3.迷茫型:身边有个同事,问真相帝哪个平台安全,真相帝随口说了句HL可以,然后,然后就砸了2万买进一个年化8%的标,而且是长期一次性。
4.电脑文盲型:听说哪个平台可以,然后一次性全部投资,真相帝问为什么,答案是自己不会操作电脑,请人操作,自己学起来麻烦。
5.投机型:这类人有丰富的投资经验,只限于新平台捞一把就走的,属于玩心理战术,对于平台透明不透明关系不大。
6.业内投资人:精通各种玩法,活跃于多个中型平台,他们大多求稳,会考究平台实力,项目真实,资料透明与否。
投资人的比重真相帝不说,估计大家心理有数。第1、2、3、4类占人群比例的77%,剩下23%才是第5和第6类。
大家可以看的出来。除了投机者和业内投资人对于项目有个最起码的认识外,其他人群完全没有投资的风险意识,好像项目的透明度和自己没有关系。
这只是一组数据,但是可以推衍出太多的问题。有人曾说过,透明度是平台与投资人的博弈,可在真相帝看来不是,压根就没出现过博,何来博弈之说。也有人说过,平台强势,投资人弱势,可笔者看来,不是投资人弱势,是他们不懂如何强势,不管多强的平台,资金链失衡,它还怎么活?
平台不公开借款人相关借款资料,投资人要求了吗?不要一味只说平台如何,改不改是平台的事,要不要求是你们的事,金子在自己手里难道还没有主动权?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23