京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的预处理以及带来的6个数学问题_数据分析师培训
从狭义上讲,大数据确实就是大量的数据,而从广义上说,大数据不仅仅是大量的数据,更是互联网中数据价值的挖掘和分析,包括对此存储,因为会用到软件,因此被狭义理解层面更具深度。
大数据在运行过程中会遇到很多问题,也有很多的操作,比如预处理。这个主要用于完成对已经接收到的数据进行辨别、抽取和清洗的操作,在抽取过程中,大数据分析软件会根据数据的结构和类型,对其进行深入的抽取,在此过程中,数据抽取会帮助企业更好的转化数据,从而让复杂简单化,以便于企业能够更好的处理数据。
而对于数据的清洗方面,专业人士则指出,大数据中有很多都是企业不需要的,也没有必要浪费时间在上面分析,因此可以将其清洗掉。这样既能避免数据被一些不重要的信息干扰,同时还能够通过这种方式简单操作流程,让数据更加有价值。
至于大数据带来的数学问题,专业人士指出,一共有六点,分别如下:
第一、大数据的采样
大数据每天都在变大,但是对于企业来说,这样的大数据并不受欢迎,因为这意味着有更多的工作要做,而将其变小是企业在处理问题时候最明智的做法。在此过程中,需要做到两点,一是要找到与算法相匹配的非常小的样本集,另一方面则是要对算法的误差影响进行评估,做到心中有数。
第二、大数据的表示
即将存储、影响算法效率的数据进行明示,这样操作人员就可以通过大数据分析软件了解这一切,避免被误导。
第三、当大数据出现不一样的时候
这时候,最重要的就是如何消除不一样,而消除不一样就要找到问题的根本,只有这样才能真正明白为什么会出现不一样的情况。
第四、超高维和不确定维
前者会导致数据稀疏,后者会导致数据并存,或者是按照任务定维做,无论是哪一种都会对企业的运行决策产生不利的影响。
第五、不适定性
这是高维导致的问题,会有很多解决方法,但是究竟哪种更快捷到目前还没有确切的说法。
大数据的存在满足了企业发展对信息的需求,而大数据分析软件的出现则将这一需求简单化,为企业带来更多的发展契机。文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07