京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据也有小应用_数据分析师培训
随着信息技术的快速发展,近来, 大数据及以之为基础的研究范式——大数据范式 (big data paradigm)——成为了越来越流行的概念。 虽说大数据的 “大” 乃是相对概念, 即相对于数据存储和处理技术而言的 “大”, 从而并无绝对意义, 但这几年很多人对相对于当前技术而言的 “大” 似乎产生了特殊感觉, 认为它已超越了某种临界值, 将引发诸多领域的重大、 甚至革命性的变革。 每当有大的新东西出现在地平线上时, 这种稍显迫不及待的迎接革命的感觉乃是常见的衍生现象, 其可靠性往往大可商榷。 不过, 大数据有着各种各样的具体应用倒是不争的事实。
在本文中, 我们就来介绍一项小应用。
严格讲, 本文的标题有些 “拉大旗作虎皮”, 因为这项小应用所涉及的数据相对于当前技术而言远远算不上 “大” (因此我们对 “大数据” 一词加了引号), 不过它所采用的以数据关联为核心, 将因果置一旁的做法乃是大数据范式中的典型方法, 而且这项小应用规模虽小, 毕竟也需动用计算机, 从而在手段上跟大数据范式也算搭界。
这项小应用就是确定某些历史文件的年代。
确定历史文件的年代一向是史学家们关心且必须要做的事情, 因为很多资料只有确定了年代才能发挥应有的作用。 但由于不难想象的种种原因, 很多历史文件的年代是未知的。 为确定这类文件的年代, 一种典型的做法是求助于碳-14 年代测定法。 但是, 由此测定的年代往往有几十年的误差, 对远古文件也许不算什么, 对近代文件却稍嫌粗糙。 此外, 这种方法有时还会对文件产生一定程度的破坏。 除碳-14 年代测定法外, 利用纸张、 油墨等技术的演进历史, 从文件所用的纸张或油墨的类型上确定年代也是常用方法, 但可惜误差往往也在几十年以上。 这些方法的不尽如人意之处, 使得其它方法有了用武之地。 最近, 加拿大多伦多大学的研究者蒂拉亨等人就示范了一种新方法。
蒂拉亨等人的研究对象是英国中世纪 时期的大量契据。 那些契据大都为拉丁文, 记录的是各类财产及土地的交易, 对研究中世纪时期的英国历史有不小的参考价值。 不过, 在现存百万份以上的契据中, 大部分是既没有标注年代, 也无法从所述内容中推断出年代的。 另一方面, 中世纪距今不过几百年, 前面提到的那些方法的几十年误差相对来说就显得很大, 而且上百万份的巨大数量也使那些方法变得不太现实。 为此, 蒂拉亨等人采用了一种新方法。 他们以几千份年代已知的契据为基准, 对年代未知的契据与年代已知的契据中词汇及词组的分布规律进行统计对比, 由此分析出前者与不同年代的后者之间的相似程度, 并以此确定前者最有可能的年代 (即相似程度最大的年代); 或者, 也可以先由后者估算出不同词汇及词组在不同年代的出现概率, 再以它们在前者中的出现数量估算出前者在各个年代的出现概率, 进而确定最有可能的年代 (即出现概率最大的年代)。
这类方法的准确度如何呢? 蒂拉亨等人用一个很聪明的方法进行了测算, 那就是将之应用到年代已知的文件上, 将估算结果与实际年代进行比较。 他们发现, 这种估算的平均误差可缩小至 10 年以下, 从而比前面提到的那些方法更精确。
当然, 这种方法中也有许多不确定性, 比如契据之间的相似程度, 契据在不同年代的出现概率等都并无唯一定义, 统计对比所用的算法也不唯一。 这些不确定性在大数据范式中是很常见的, 它们有弊也有利。 “弊” 者在于理据不像碳-14 年代测定法之类的方法那样明晰; “利” 者则在于提供了改进方法所需的额外自由度。 事实上, 蒂拉亨等人的研究本身就是这种额外自由度的体现, 因为他们并不是这类方法的创始人, 而只是利用不确定性所提供的额外自由度, 引进了新的定义及算法。
蒂拉亨等人所示范的方法也适用于其它时期或其它类型的文件, 并且除了帮助确定年代外, 还有助于确定与文件有关的其它属性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22