京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据所需的两类专业人士_数据分析师培训
今天,企业对大数据的关注无论何时都更甚于以往。然而,企业若要真正善用“大数据”,还需要配备两种类型的专家及建立客户服务文化。
大数据所需的专业人士
1.数据科学家(Data Scientist)取用这种经过组织的数据,建立复杂的分析模型,(CDA数据分析师培训)例如,协助预测顾客行为,并且可做先进的顾客区隔和定价优化(pricing optimization)。他们确保会经常更新每个模型,好让模型长期有效用。
2.活动专家(Campaign Expert)将模型转化为成果。他们很深入了解那些提供特定营销活动的技术系统,例如哪个客户应该在什么时候得到什么消息。他们使用从模型中学到的东西,来安排营销活动推出顺序和所用渠道的优先次序,例如,对某个已确认的市场区隔过去的行为进行分析,结果发现,最有效的方式是先发送一封电子邮件给客户,然后在48小时后直接邮寄广告数据。
重要的是,应追踪数据在整个大数据团队里移动的情况,并确保在人员和机器之间交接的所有数据,都有明确的负责人。这么做,可确保担任既定角色的每个人都负起责任,完整地交付数据,而不只是完成个人的任务而已。
建立客户服务文化
打造没有人使用的产品或服务,是很伤士气的。所以,你的团队要负责证明这些模型对企业内部的业务负责人有何助益。这需要把业务负责人当成顾客。优良的零售商都会告诉你,若要成功,你必须了解你的顾客。定期与他们会面,以了解他们的需求,并征询他们对团队所建立的模型表现如何的意见。不时问自己,「在公司里,我的分析可以帮助到谁?」以及「他们是否同意,是我帮助他们成功的?」
我们也观察到,大数据的相关计划失败了,因为企业内部顾客对大数据团队没有信心,也不信任他们的模型。信任始于透明化。对于谁正在做什么,要完全公开。提供务实的预定完成时间。在决定要建立哪些模型时,应清楚说明要做哪些取舍,好让你的内部顾客有足够的资讯做出明智决定,最后做出最佳终端产品。
为确保采取「服务单位」式的文化,你应根据企业的成功与否,来评量个人绩效,不只是考虑数据的数量或速度等常用的评量指标。追踪内部顾客使用多少新模型以获得新结果。有些公司发放大数据团队成员奖金的标准,依据的是内部顾客多迅速和多广泛地采用那些模型,而不是模型有多创新。这种方法可以防止传统的口水战:「我建立了一个绝妙的模型,没有人使用它不是我的错!」这样做也能预防这个问题:为分析而分析,不是为了对业务有好处而分析。
建立成功的分析团队,既需要合适的人,也需要合适的文化。关于大数据,你的团队应该花较少时间去担心如何分析数据,应该花较多时间专注于如何提供数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07