
大数据所需的两类专业人士_数据分析师培训
今天,企业对大数据的关注无论何时都更甚于以往。然而,企业若要真正善用“大数据”,还需要配备两种类型的专家及建立客户服务文化。
大数据所需的专业人士
1.数据科学家(Data Scientist)取用这种经过组织的数据,建立复杂的分析模型,(CDA数据分析师培训)例如,协助预测顾客行为,并且可做先进的顾客区隔和定价优化(pricing optimization)。他们确保会经常更新每个模型,好让模型长期有效用。
2.活动专家(Campaign Expert)将模型转化为成果。他们很深入了解那些提供特定营销活动的技术系统,例如哪个客户应该在什么时候得到什么消息。他们使用从模型中学到的东西,来安排营销活动推出顺序和所用渠道的优先次序,例如,对某个已确认的市场区隔过去的行为进行分析,结果发现,最有效的方式是先发送一封电子邮件给客户,然后在48小时后直接邮寄广告数据。
重要的是,应追踪数据在整个大数据团队里移动的情况,并确保在人员和机器之间交接的所有数据,都有明确的负责人。这么做,可确保担任既定角色的每个人都负起责任,完整地交付数据,而不只是完成个人的任务而已。
建立客户服务文化
打造没有人使用的产品或服务,是很伤士气的。所以,你的团队要负责证明这些模型对企业内部的业务负责人有何助益。这需要把业务负责人当成顾客。优良的零售商都会告诉你,若要成功,你必须了解你的顾客。定期与他们会面,以了解他们的需求,并征询他们对团队所建立的模型表现如何的意见。不时问自己,「在公司里,我的分析可以帮助到谁?」以及「他们是否同意,是我帮助他们成功的?」
我们也观察到,大数据的相关计划失败了,因为企业内部顾客对大数据团队没有信心,也不信任他们的模型。信任始于透明化。对于谁正在做什么,要完全公开。提供务实的预定完成时间。在决定要建立哪些模型时,应清楚说明要做哪些取舍,好让你的内部顾客有足够的资讯做出明智决定,最后做出最佳终端产品。
为确保采取「服务单位」式的文化,你应根据企业的成功与否,来评量个人绩效,不只是考虑数据的数量或速度等常用的评量指标。追踪内部顾客使用多少新模型以获得新结果。有些公司发放大数据团队成员奖金的标准,依据的是内部顾客多迅速和多广泛地采用那些模型,而不是模型有多创新。这种方法可以防止传统的口水战:「我建立了一个绝妙的模型,没有人使用它不是我的错!」这样做也能预防这个问题:为分析而分析,不是为了对业务有好处而分析。
建立成功的分析团队,既需要合适的人,也需要合适的文化。关于大数据,你的团队应该花较少时间去担心如何分析数据,应该花较多时间专注于如何提供数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08