京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据产业链清晰_数据分析师培训
运营商大数据产业链主要分为四层:即大数据采集、大数据管理、大数据应用及大数据运营。
大数据采集是大数据产业链的底层基础。目前政策要求数据全采全监,包括通话记录及内容、短信记录、位置的轨迹信息等管道内特有数据,所以数据采集成为了运营商的刚性需求。政策及4G助力采集市场率先爆发。而大数据采集对进一步做大数据管理、应用及运营有着最直接的支撑。
大数据管理通过数据共享平台实现。数据共享平台主要由数据汇集、数据支撑、数据接入点三层组成,向下可以支撑数据采集层,向上支撑外部数据应用系统。在数据采集过程中,有时一个口有超过十套系统在采集,比较杂乱。大数据共享平台是趋势,即将采集好的数据放在共享数据池中,实现共享避免重复采集,这也是运营商比较偏好的方式。
大数据应用主要包括基础应用和行业应用。基础应用,包括网络管理和优化及客户关系管理;行业应用,包括企业业务运营监控和经营分析。
大数据运营终极目标:增值业务和精准营销。增值业务:利用特定的网络数据,创新增值应用,增加运营业务收入。简单来说,数据采集阶段形成了最全面、最及时的数据,通过具体时间段、具体地点(实际或虚拟)客户行为的趋势性分析,即可形成非常有价值的判断,再通过指定的要求来分析,即会形成更有指导意义的结论。精准营销:通过对移动互联网用户的行为分析,进行用户偏好分群进而建立精确的用户画像,并开展针对性的市场营销及配套服务。
对于数据采集公司来讲,面向核心网各个功能域采集数据。通过对移动、固网中控制数据和用户数据的采集分析,并对监测报告进行深度解析,发现数据应用的潜在特征进行识别。
中国移动设备数据流量2014年增幅接近50%。根据工信部数据,包括智能手机在内,中国各类移动设备2014年的平均流量首次超过200MB。但根据思科的统计,全球智能手机2014年平均数据流量达到819MB。这从侧面显示,我国平均流量水平还有很大的提升空间。
三大运营商中,中国移动2013年底率先拿到TD-LTE牌照,拉开了我国进入4G时代的序幕。中国联通和中国电信2015年2月底才拿到FDD-LTE牌照,4G建设将全面铺开。4G时代对运营商的重大变化即为,传统数据(信令)采集业务也将由过去的2G、3G以语音和短信为主全面向4G数据(上网)业务拓展,而4G大量的图片、视频信息也将在采集规模上远远超过2G、3G。
据我们测算,在2G-3G时代,电信及联通在信令和DPI采集领域投入约20亿-40亿元。随着FDD牌照的发布,三大运营商均进入4G时代,都在加大数据采集领域的资本开支。我们之前预计,今年三大运营商规划的采集规模或达25亿元,其中以中国移动4G为主。但从年初招标的情况来看,竞争相当激烈,移动一期的招标最终成交价可低至最初规划的1/10水平。预计今年最终合计将在15亿-20亿元之间的水平。当然,各厂家在初期血拼是为了“圈地”,即进入运营商集采或是省分的供应链体系,这样才能够获得后续扩容,并通过扩容来实现盈利。随着4G渗透率的大规模提升,数据采集的需求量将现指数级增长。
随着三大运营商都大力推进4G建设进程,其共同发力将进一步提升4G的普及率,数据量级的增长将相当显著,我们认为运营商数据“采集”业务将在未来几年出现大规模爆发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22