京公网安备 11010802034615号
经营许可证编号:京B2-20210330
让大数据立体起来_数据分析师培训
大数据这个词儿火起来已经不是一天两天的事情了。尤其在今年两会上,浪潮集团有限公司董事长孙丕恕提出了加快政府数据开放,李克强总理非常赞同,再一次提高了大数据的热度。
不过,大数据的应用一直以来存在诸多诟病。由于数据泄露事件频频发生,对于大数据开放带来的隐私保护、数据安全等问题的质疑层出不穷。而一部分人对大数据的过分炒作,也受到了行业内人士的批评。
大数据需要更深入、更立体
由于大数据存在的缺陷,“快数据”“广数据”等等五花八门的概念又被提了出来,仿佛大数据变成了徒有其表的噱头。
在笔者看来,“快数据”“广数据”之类的概念,其实不过是大数据的内分细化,并没能脱离大数据的范畴。大数据也并不是虚无缥缈的概念,而是实实在在关系到社会民生、经济发展的重要资源。
那么为什么很多人在质疑大数据呢?
笔者个人认为,之所以有些人对大数据还存在顾虑,是因为我们现在对大数据的使用太简单粗暴了。拿淘宝多个大促日的大数据报告来说,每次发布后都能引来大范围的吐槽。尽管罗列的数据都是客观真实的,可是分析报告却是漏洞百出,闹出不少笑话。那是因为,这份定位就放在浅层次的娱乐性报告,只是在一个平面内、很表层的分析了客观数据。这就显得这份数据分析十分的想当然了。
一份有价值有分量的大数据分析,不仅需要纵向挖掘,更需要垂直挖掘。甚至很可能需要结合另一个方面的数据,来多平面的分析数据。比如你要分析双11大促的大数据,很可能还需要每个省份人均消费水平、年龄层分布、男女比例等等数据来参与分析,才可能得出有价值的结果。
所以说,大数据分析,需要立体化、深层化。
数据开放不等于侵犯隐私
其实不仅是大数据分析需要立体化、深层化,想要解决大数据带来的最严重问题:隐私保护、数据安全,更需要立体化、深层化。
有人觉得,开放数据,势必会导致侵犯隐私。事实上并不完全如此。甚至,我们可以利用大数据本身,来进行隐私保护。通过大数据采集,我们可以针对各个平台的安全度、信用度进行分析和评判,来引导用户对这些平台的使用。让大家选择更安全更可信的平台,在一定程度上就是保护了用户的隐私。
当然,安全技术是保护数据不被泄露的最基本屏障,是必须放在第一位的。另外很重要的一点是,加强对隐私信息的界定。这样能够保证运营商们在使用大数据的同时,最大限度保护个人隐私。其实很多时候运营商并不是刻意侵犯用户隐私,而是在互联网时代下对于隐私信息的界定还不够清晰,对于广告等信息推送没有严格规范,导致垃圾广告垃圾信息泛滥,侵犯个人权益事件频发。
这就要求我们尽快出台适应互联网时代、大数据时代的法律条文。立法保护用户隐私,立法规范大数据使用,搞清楚哪些数据可以用、哪些数据不能用、违反数据保护法律后有什么样的惩处等等,能够在法制上保障我们的权益。
在这样一个数字时代,大数据的好处实在是太多了。政府开放公共数据,可以提升服务效率、提升行政质量、保证公平公正;企业利用大数据,可以提升产品含金量、提升用户体验、维护已有用户、吸纳新用户;百姓使用大数据,可以让生活更加简单、快捷,等等等等,不胜枚举。正是由于大数据自身包含的范围广、层面广,所以针对大数据的应用,不应在单一的维度上,而是应该多维度立体开发。美国政府已经在政府内部专门设立了“首席数据官”,正是说明了由于大数据的复杂,必须由一批专业人士对其进行全方位的研究、挖掘。
这就像是电影,从由图片组成的影片箱,到大荧幕上的视频影像,再到现在的3D影像,逐步的立体化、多维化,才能让大数据带来最切实的便捷生活。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12