京公网安备 11010802034615号
经营许可证编号:京B2-20210330
让大数据立体起来_数据分析师培训
大数据这个词儿火起来已经不是一天两天的事情了。尤其在今年两会上,浪潮集团有限公司董事长孙丕恕提出了加快政府数据开放,李克强总理非常赞同,再一次提高了大数据的热度。
不过,大数据的应用一直以来存在诸多诟病。由于数据泄露事件频频发生,对于大数据开放带来的隐私保护、数据安全等问题的质疑层出不穷。而一部分人对大数据的过分炒作,也受到了行业内人士的批评。
大数据需要更深入、更立体
由于大数据存在的缺陷,“快数据”“广数据”等等五花八门的概念又被提了出来,仿佛大数据变成了徒有其表的噱头。
在笔者看来,“快数据”“广数据”之类的概念,其实不过是大数据的内分细化,并没能脱离大数据的范畴。大数据也并不是虚无缥缈的概念,而是实实在在关系到社会民生、经济发展的重要资源。
那么为什么很多人在质疑大数据呢?
笔者个人认为,之所以有些人对大数据还存在顾虑,是因为我们现在对大数据的使用太简单粗暴了。拿淘宝多个大促日的大数据报告来说,每次发布后都能引来大范围的吐槽。尽管罗列的数据都是客观真实的,可是分析报告却是漏洞百出,闹出不少笑话。那是因为,这份定位就放在浅层次的娱乐性报告,只是在一个平面内、很表层的分析了客观数据。这就显得这份数据分析十分的想当然了。
一份有价值有分量的大数据分析,不仅需要纵向挖掘,更需要垂直挖掘。甚至很可能需要结合另一个方面的数据,来多平面的分析数据。比如你要分析双11大促的大数据,很可能还需要每个省份人均消费水平、年龄层分布、男女比例等等数据来参与分析,才可能得出有价值的结果。
所以说,大数据分析,需要立体化、深层化。
数据开放不等于侵犯隐私
其实不仅是大数据分析需要立体化、深层化,想要解决大数据带来的最严重问题:隐私保护、数据安全,更需要立体化、深层化。
有人觉得,开放数据,势必会导致侵犯隐私。事实上并不完全如此。甚至,我们可以利用大数据本身,来进行隐私保护。通过大数据采集,我们可以针对各个平台的安全度、信用度进行分析和评判,来引导用户对这些平台的使用。让大家选择更安全更可信的平台,在一定程度上就是保护了用户的隐私。
当然,安全技术是保护数据不被泄露的最基本屏障,是必须放在第一位的。另外很重要的一点是,加强对隐私信息的界定。这样能够保证运营商们在使用大数据的同时,最大限度保护个人隐私。其实很多时候运营商并不是刻意侵犯用户隐私,而是在互联网时代下对于隐私信息的界定还不够清晰,对于广告等信息推送没有严格规范,导致垃圾广告垃圾信息泛滥,侵犯个人权益事件频发。
这就要求我们尽快出台适应互联网时代、大数据时代的法律条文。立法保护用户隐私,立法规范大数据使用,搞清楚哪些数据可以用、哪些数据不能用、违反数据保护法律后有什么样的惩处等等,能够在法制上保障我们的权益。
在这样一个数字时代,大数据的好处实在是太多了。政府开放公共数据,可以提升服务效率、提升行政质量、保证公平公正;企业利用大数据,可以提升产品含金量、提升用户体验、维护已有用户、吸纳新用户;百姓使用大数据,可以让生活更加简单、快捷,等等等等,不胜枚举。正是由于大数据自身包含的范围广、层面广,所以针对大数据的应用,不应在单一的维度上,而是应该多维度立体开发。美国政府已经在政府内部专门设立了“首席数据官”,正是说明了由于大数据的复杂,必须由一批专业人士对其进行全方位的研究、挖掘。
这就像是电影,从由图片组成的影片箱,到大荧幕上的视频影像,再到现在的3D影像,逐步的立体化、多维化,才能让大数据带来最切实的便捷生活。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10