京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据不能替代理性思考_数据分析师培训
有关大数据的讨论,几年间已经从早期的概念发展到今天的应用,应用领域也已从早期的商业领域拓展到学术领域、政策领域。首先,大数据特殊之处在于其数据来自于全体,而不再是部分数据的采样。采样数据无论如何抽取都会有抽样偏差,进而可能导致结果的偏差,在这个意义上,大数据时代,可以依靠强大的数据处理能力处理全部的数据,这是多么令人兴奋。其次,数据作为知识的重要来源,抽样调查数据也好,二手文献数据也好,人们均是从中进行分析并获取知识,但这类数据中包含的变量总归有限,知识的获取也因而受限,而大数据将大量结构复杂、类型众多的异构数据结合在一起,构成有无限组合可能的数据集合,使用计算能力可以无限扩充的云计算来进行,作为知识生产来源的大数据的数量级别进而达到PB级,因此其中潜藏的知识不知几何,人们获取知识的能力也可能会大大增加。
大数据的先行者通过各种数学和物理算法在大数据中掘金,一些人类过去未能发现的潜在关联被发现和应用,并取得了瞩目的成就和进展。基于此,大数据理论基本都提出:基于大数据发掘出的“有效”相关性关系即可进行预测;有效性不需要知道“为什么”,知道“是什么”即可。数据和算法驱动研究成为大数据研究的主要范式。我相信,大数据的无预设前提的数据驱动的相关关系的挖掘,有着解放人类被理论局限性束缚的手脚的功用。但是,我们会不会走出一个陷阱,又踏入另外一个陷阱呢?
我首先想讨论的第一个问题是,来自于全体数据的结论就是可靠的吗?在我参加的一次博士论文答辩中,答辩人报告,她使用全国人口普查数据发现,老年人的健康与财富之间的关系是:老年人健康水平越低则财富越多,或者反过来说,老年人财富越多越不健康。评委当时一片哗然。事实上这是合情理的,其机理就是,一个越不健康的老人,就需要越多越好的医疗资源才能存活,而越多的财富能保证其越多越好的医疗资源。因此,相同的不健康状况的老人中,钱越多则具有越高的生存概率。换个角度看,不健康的老人中,没钱的死了,有钱的活下来了;越是不健康的老人中,只有越有钱的才能存活。因此,全体数据的结果是:老人的财富与健康呈现出负相关。这是来自于全体数据的结果,显然是合理的,但其显示的相关关系却有些荒谬。
这样就导致了我的第二个问题:追求这样的相关关系有价值吗?这样的相关关系可信吗?我想读者都不会相信,健康与财富呈现出的负相关是正确的相关关系,而出于理性,相信的恰恰是健康与财富应该呈现出正相关的关系。在这里,社会实体所表现出来的模式显然违背了我们对社会的理论认识。我们都知道,理论是现实在头脑中的反映,但是这个例子告诉我们,人类通过理性建构的理论并非社会现实在头脑中的简单反映。这里,我提出一对概念来阐述我的观点。变量之间的关系有两种表现形式,一种是社会实体的表现形式(real pattern),一种是社会理论的表现形式(relation pattern)。前者是社会实体直接体现出来的变量和变量之间的相关关系,后者是学者通过理性思考建构的理论空间的因果关系。变量在社会实体上表现的相关关系,由于社会实体的选择性偏误(例子中是由死亡的非随机性造成),导致了相关关系的扭曲,甚至相反。因此,人们宁愿相信自己的理性,而不愿只是机械地接受社会实体表现出来的模式。
人类的理性,使得我们知晓变量间在社会实体上的表现形式并不必然等于社会理论上的表现形式。对大数据使用数据驱动,能获得的仅仅是社会实体上的表现形式,这可能与理论空间的因果关系一致,也可能完全相反。因此,放弃人的理性思考,放弃获得具有严密因果逻辑的理论上的表现形式,使用找到相关关系即可的大数据分析范式——数据驱动,在我看来是无法接受的。大数据的分析,仍然需要理论驱动和理论理解所建构的因果关系。因此,无论如何精巧的大数据分析工具的使用,都不能代替生产工具的人的理性思考。“武器的批判”并不能取代“批判的武器”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01