京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据需要建立规则和标准_数据分析师培训
作为在上世纪90年代就提出可穿戴设备概念的潘特兰教授,在大数据方面也享有卓著声誉,但他对大数据的看法,站在互联网业者的角度来看略显保守。因为他最为人称道的几个研究方向并非大数据的应用,而是个人数据采集规则,大数据安全和隐私等。不过这些在我们眼里看上去远比不上大数据发展优先的主题,并不妨碍他成为大数据领域首屈一指的专家。
潘特兰的学生中牛人辈出,有发明谷歌眼镜的,也有发明面部识别技术的。潘特兰本人则较为热衷于为大数据采集和应用制定规则,设立标准,甚至还在世界经济论坛这种重大场合为政治及经济人物提供各种与此有关的建议,可以看得出,大数据的规则和秩序是他更为看重的主题。这在当前整个社会对大数据的狂热情绪下,似乎显得有些违和,但谁也不敢肯定,几年后这未必就不是一个至高议题。
与那些喜欢做美食但自己不吃的厨师一样,潘特兰作为可穿戴设备教父,自己是不戴可穿戴设备的。虽然没有明说,但他对产自IT界的各种可穿戴设备所表现出的鄙夷,还是能够令人清晰感知到的。吃饭的时候他曾表达过这样的意思:不要相信那些现有的可穿戴设备,未来的大数据与之没有半点关系。而在现场视频中对各种市面上常见的可穿戴设备进行测试时,结果也确实与其态度有所吻合,所有加入测试的设备无一幸免地暴露出数据上的偏差,外观不错的小米手环误差率竟然达到了15%。
潘特兰将这些设备称之为简单、劣质,而他自己认可的可穿戴设备标准,则完全以用户体验为导向。他认为,那些设备光是能将人的步速和心跳频率测出来,本质上是没什么用的,用户需要让这些设备告诉自己,今天他的身体到底好不好,有没有什么欠缺,该如何进行调理等等。他所说的这种我们从未见过的场景,我想就是可穿戴设备和大数据紧密结合的产物了,很遗憾这种产品目前还没问世。
大数据的四个阶段,采集、存储、分析、应用,目前的发展水平似乎仍停留在采集阶段,但对此已有分歧了。大公司喜欢把合理诉求和自我诉求巧妙混合在一起,然后拿出来说事儿,他们对数据的渴望是贪婪的,恨不得能采集的都采集到,然后实现数据互通,最终实现产品化和商业化。
但要注意到的问题是,数据采集和使用仍然是应该有边界的。就拿BAT来说,腾讯把聊天记录作为大数据样本,阿里把交易信息作为大数据样本,百度把越权抓取的非公开信息作为大数据样本,从法理上来说都是存在一定风险的。个人网上信息的所有权在过去并不是个问题,未来一定会是个问题。
潘特兰为此提出的解决方案,则更显人性化,基于用户角度去考虑问题,较少考虑商业因素。他认为,每个人都有权使用自己的数据,选择进入或者退出网络,或者选择是否分享给别人。只有用户对数据应用和安全放心了,不觉得会有什么问题了,才会有真正的大数据。
其实很容易理解这些话的含义,大公司对数据的撷取是主动的,而用户对数据的被收集则是被动的,这对于一个未来的庞大产业而言,不可能不是一个问题。英国微电影“黑镜“中有个场景,在一个人出车祸死后,系统自动搜集此人在各种社交网络上的发言和分享,类似于人肉搜索,然后基于这些数据模仿出其语言,再通过逼真的模拟语音,实现与未亡人进行跨阴阳两界对话的效果。这个场景相当令人震撼,也相当令人担忧。
如果大数据应用到这个地步,必然会出现不良后果,这会反过头来损害大数据产业的发展。潘特兰说的那些话意思在于,你让用户自己去选择个人数据的应用,赋予其主动权,这才是对大数据发展更有好处的事情。
例如,用户如果认为自己的身体数据并没什么隐私问题,你给他退出的权利,他会主动给你上传更多的优质数据,而这些数据是公司们想通过技术手段收集,也收集不来的。可穿戴设备与这种兼顾了用户权利的数据结合,才会达到他心目中的理想效果。
其实我一直都有个看法,通过大数据预测未来是一件不靠谱的事情,不管你的应用技术如何发达,IT设备如何高效,这本质上是一种违背能量守恒定律的臆想,如永动机一样永远不能实现。不过,在预测未来之外,大数据可做的事情其实要比我们想象的更多,如石油带动能源革命一样,会对未来的人类生活产生重大影响。
这个事情需要有序推进还是野蛮生长,着实是值得深思的问题。由于数据维度的不同,文化习惯的差异,大数据之间未来发展到应用阶段时,会呈现出严重的不同步现象,出现失真,解决这个问题的关键,在于规则和标准。而为大数据建立规则和标准,似乎正是潘特兰教授真正心向往之的一件事,因为他知道,这可能会影响到一个革命性产业在未来的走向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23