
大数据驱动制造业迈向智能化_数据分析师培训
“人类正从IT时代走向DT时代,”阿里巴巴集团创始人马云在各种场合都不遗余力地推销自己的观点,信息社会已经进入了大数据(Big Data)时代。大数据的涌现改变着人们的生活与工作方式,也改变着制造业企业的运作模式。
一、制造业也处于一个数据爆炸的时代
近年来,随着互联网、物联网、云计算等信息技术与通信技术的迅猛发展,数据量的暴涨成了许多行业共同面对的严峻挑战和宝贵机遇。随着制造技术的进步和现代化管理理念的普及,制造业企业的运营越来越依赖信息技术。如今,制造业整个价值链、制造业产品的整个生命周期,都涉及到诸多的数据。同时,制造业企业的数据也呈现出爆炸性增长趋势。
制造业企业需要管理的数据种类繁多,涉及到大量结构化数据和非结构化数据:
(1)产品数据:设计、建模、工艺、加工、测试、维护数据、产品结构、零部件配置关系、变更记录等。
(2)运营数据:组织结构、业务管理、生产设备、市场营销、质量控制、生产、采购、库存、目标计划、电子商务等。
(3)价值链数据:客户、供应商、合作伙伴等。
(4)外部数据:经济运行数据、行业数据、市场数据、竞争对手数据等。
随着大规模定制和网络协同的发展,制造业企业还需要实时从网上接受众多消费者的个性化定制数据,并通过网络协同配置各方资源,组织生产,管理更多各类有关数据。
二、大数据是工业互联网的命脉
大数据可能带来的巨大价值正在被传统产业认可,它通过技术创新与发展,以及数据的全面感知、收集、分析、共享,为企业管理者和参与者呈现出看待制造业价值链的全新视角。
(1)实现智能生产
在德国“工业4.0”中,通过信息物理系统(CPS)实现工厂/车间的设备传感和控制层的数据与企业信息系统融合,使得生产大数据传到云计算数据中心进行存储、分析,形成决策并反过来指导生产。
具体而言,生产线、生产设备都将配备传感器,抓取数据,然后经过无线通信连接互联网,传输数据,对生产本身进行实时监控。而生产所产生的数据同样经过快速处理、传递,反馈至生产过程中,将工厂升级成为可以被管理和被自适应调整的智能网络,使得工业控制和管理最优化,对有限资源进行最大限度使用,从而降低工业和资源的配置成本,使得生产过程能够高效地进行。
过去,设备运行过程中,其自然磨损本身会使产品的品质发生一定的变化。而由于信息技术、物联网技术的发展,现在可以通过传感技术,实时感知数据,知道产品出了什么故障,哪里需要配件,使得生产过程中的这些因素能够被精确控制,真正实现生产智能化。因此,在一定程度上,工厂/车间的传感器所产生的大数据直接决定了“工业4.0”所要求的智能化设备的智能水平。
此外,从生产能耗角度看,设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情况,由此能够在生产过程中不断实时优化能源消耗。同时,对所有流程的大数据进行分析,也将会整体上大幅降低生产能耗。
(2)实现大规模定制
大数据是制造业智能化的基础,其在制造业大规模定制中的应用包括数据采集、数据管理、订单管理、智能化制造、定制平台等,核心是定制平台。定制数据达到一定的数量级,就可以实现大数据应用。通过对大数据的挖掘,实现流行预测、精准匹配、时尚管理、社交应用、营销推送等更多的应用。同时,大数据能够帮助制造业企业提升营销的针对性,降低物流和库存的成本,减少生产资源投入的风险。
利用这些大数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降,并将极大地减少库存,优化供应链。同时,利用销售数据、产品的传感器数据和供应商数据库的数据等大数据,制造业企业可以准确地预测全球不同市场区域的商品需求。由于可以跟踪库存和销售价格,所以制造业企业便可节约大量的成本。
“工业4.0”本质是基于信息物理系统(CPS)实现“智能工厂”,使智能设备根据处理后的信息,进行判断、分析、自我调整、自动驱动生产加工,直至最后的产品完成等步骤。可以说,智能工厂已经为最终制造业大规模定制生产做好了准备。
实现消费者个性化需求,一方面需要制造业企业能够生产提供符合消费者个性偏好的产品或服务,一方面需要互联网提供消费者的个性化定制需求。由于消费者人数众多,每个人需求不同,导致需求的具体信息也不同,加上需求不断变化,就构成了产品需求的大数据。
消费者与制造业企业之间的交互和交易行为也将产生大量数据,挖掘和分析这些消费者动态数据,能够帮助消费者参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。制造业企业对这些数据进行处理,进而传递给智能设备,进行数据挖掘,设备调整,原材料准备等步骤,才能生产出符合个性化需求的定制产品。
三、大数据构成新一代智能工厂
消费需求的个性化,要求传统制造业突破现有生产方式与制造模式,对消费需求所产生的海量数据与信息进行大数据处理与挖掘。同时,在进行这些非标准化产品生产过程中,产生的生产信息与数据也是大量的,需要及时收集、处理和分析,以反过来指导生产。
这两方面大数据信息流最终通过互联网在智能设备之间传递,由智能设备进行分析、判断、决策、调整、控制并继续开展智能生产,生产出高品质的个性化产品。可以说,大数据构成新一代智能工厂。
智能工厂中的大数据,是“信息”与“物理”世界彼此交互与融合所产生的大数据。大数据应用将带来制造业企业创新和变革的新时代。在以往传统的制造业生产管理的信息数据基础上,通过物联网等带来的物理数据感知,形成“工业4.0”时代的生产数据的私有云,创新了制造业企业的研发、生产、运营、营销和管理方式。这些创新,给制造业企业带来了更快的速度、更高的效率和更敏锐的洞察力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29