大数据的出现正在改变着我们的生活方式和工作方式,改变了我们过去对待数据的思维认识,开始更加注重数据的相关性的意义。但是大数据的到来,依托于云计算平台,因此也会面临着一些不可避免的安全威胁,下面根据自己搜集的资料梳理下安全威胁TOP10。
大数据的十大安全威胁之一:分布式编程框架下的安全计算
大数据自然要用到许多分布式计算,比如MapReduce框架,其最著名的实现即Hadoop,将数据分成多个块,针对每个块先做mapper处理,得到一系列的key-value对,然后再由reducer聚类同一个key的值,得到结果。这里容易出现两个问题:一是Hadoop计算结果的正确性依赖于Mapper的运算正确与否,如果存在恶意的Mapper干扰或者意外的错误,将会直接导致最终数据的错误;二是数据在第一轮Mapper的过程中,有可能得到的Key-value很特殊,从而泄露数据用户本身的部分隐私。
大数据的十大安全威胁之二:非关系数据库的安全实现
由于大数据的数据来源混杂,导致数据格式种类繁多,因此很难使用传统的关系型数据库进行体现,NoSQL数据库因此出现并获得快速发展。但是NoSQL数据库在设计实现之初所有的考虑都聚焦在了分布式数据库的实现上,因此并没有单独设置安全功能模块,实际中往往将安全功能作为一个中间件来实现,NoSQL本身没有提供针对安全功能的任何扩展机制,云环境下的复杂问题对NoSQL的安全性提出了诸多挑战。
大数据的十大安全威胁之三:数据存储安全和事务日志安全
传统数据库下,DB可以直接得知数据的迁移和修改情况,但是在大数据下,由于数据变化的速度、范围以及种类都不可同日而语,因此DB不能够容易地跟踪数据的变化。
大数据的十大安全威胁之四:终端输入有效性验证
大数据的数据可能来自于多种来源,当然也包括各种终端,比如私人的BYOD,这些数据的有效性很难保证。我们可以考虑这样的逻辑:大数据依托于数据进行算法处理得出预测,但是如果这些收集上来的数据有问题又如何呢?也许大数据的数据规模可以使得我们无视一些偶然非人为的错误,但是如果有个敌手故意放出干扰数据呢?比如天气预报依赖于许多传感器,如果这些传感器都被恶意修改...或者依靠手机进行某项社会事务的公投,如果敌手可以伪造多个虚假手机ID参与投票...这些无疑都会直接影响最终的数据结果,当然也影响了我们的判断和预测。因此现在非常需要研究相关的算法来确保数据来源的有效性,尤其是有效性事关重要的大数据领域。
大数据的十大安全威胁之五:实时安全监控
传统的安全监控系统针对的是静态的、少量的数据,建立的模型也是有很多欠缺。当面对大数据的规模时,以往的安全监控系统会触发大量的虚假警报。我们非常需要一套在大数据模式下可用的安全系统,它可以在我们需要的时候告诉我们:“谁在访问数据?访问哪些数据?从哪里访问的?”以及“我们是否受到了攻击?请立刻评估下损失?”等等;当然也存在民用系统的可用性,比如实时监控新药投放市场后的异常搜索量,可以及时停止药物滥用。
大数据的十大安全威胁之六:可扩展的隐私保护策略
这段也许与密码协议有关,在大数据时代下,匿名策略已经不能保护我们的隐私了,《大数据时代》中就介绍了父亲不知道,而商家知道其女儿怀孕的这样一个事例。我不需要知晓你的确切信息,但是我只需要将过去分离的信息进行整合,就可以重新“刻画”你。我们现在需要切实可行的隐私保护协议。
大数据的十大安全威胁之七:访问控制策略
有点类似于上面,我们必须确保云上数据的保密性、完整性和可用性。因此必须重新设计访问控制协议,因为传统的“all-or-nothing”的访问控制协议,非常粗地进行网络行为的限制。大数据,没有共享,没有可用,哪来大数据?因此我们既要保证数据保密不被篡改,又要使得可以被一定程度地共享,作为大数据的一份子使用,而这本身就是一对矛盾,幸好我们现在开始有基于属性的访问控制协议,但是这还远远不够。
大数据的十大安全威胁之八:细粒度访问控制
基本问题同上面,只不过这里更多涉及访问控制协议的设计,而上衣额则重在密码学的应用。
大数据的十大安全威胁之九:细粒度审计
大数据的十大安全威胁之十:数据起源
大数据中的数据来源的元数据会因为规模的增长而迅速复杂化,我们经常需要知道数据的起源,即创建的时间,不是在一台主机或网络中,而是在大数据下。我们需要快速省时地确定数据的起源,否则本身便将失去意义。比如侦测内部金融企业的交易记录,或者确定搜索数据的准确性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03