京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用SAS进行数据分析:聚类分析_数据分析师培训
用CLUSTER过程和TREE过程进行谱系聚类
一、CLUSTER过程用法
CLUSTER过程的一般格式为:
PROC CLUSTER DATA=输入数据集
METHOD=聚类方法 选项:
VAR 聚类用变量:
COPY 复制变量:
RUN;
其中的VAR语句指定用来聚类的变量。COPY语句把指定的变量复制到OUTTREE=的数据集中。
PROC CLUSTER语句的主要选项有:
·METHOD=选项,这是必须指定的,此选项决定我们要用的聚类方法,主要由类间距离定义决定。方法有AVERAGE,CENTROID,COMPLETE, SINGLE, DENSITY, WARD, EML, FLEXIBLE, MCQUITTY, MEDIAN, TWOSTAGE等,其中DENSITY,TWOSTAGE等方法还要额外指定密度估计方法(K=,R=或HYBRID)。
·输入DATA=数据集,可以是原始观测数据集,也可以是距离矩阵数据集。
·OUTTREE=输出谱系聚类树数据集,把谱系聚类树输出到一个数据集,可以用TREE过程绘图并实际分类。
·STANDARD选项,把变量标准化为均值0,标准差1。
·PSEUDO选项和CCC选项。PSEUDO选项要求计算伪F和伪t2统计量,CCC选项要求计算R2、半偏R2和CCC统计量。其中CCC统计量也是一种考察聚类效果的统计量,CCC较大的聚类水平是较好的。
二、TREE过程用法
TREE过程可以把CLUSTER过程产生的OUTTREE=数据集作为输入,画出谱系聚类的树图,并按照用户指定的聚类水平(类数)产生分类结果数据集。一般格式如下:
PROC TREE DATA=输入聚类结果数据集
OUT=输出数据集GRAPHICS
NCLUSTER=类数选项:
COPY复制变量:
RUN;
其中COPY语句把输入数据集中的变量复制到输出数据集(实际上这些变量也必须在CLUSTER过程中用COPY语句复制到OUTTREE一数据集)。PROC TREE语句的重要选项有:
DATA=数据集,指定从CLUSTER过程生成的OUTTREE=数据集作为输入。
OUT=数据集,指定包含最后分类结果(每一个观测属于哪一类,用一个CLUSTER变量区分)的输出数据集。
NCLUSTERS=选项,由用户指定最后把样本观测分为多少个类。
HORIZONTAL,画树图时横向画。
例:有三种不同鸢尾花(Setosa,、Versicolor、Virginica),种类信息存入了变量SPECIES,并对每一种测量了50棵植株的花瓣长(PETALLEN),花瓣宽(PETALWID),花萼长(SEPALLEN),花萼宽(SEPALWID)。这个数据己知分类,并不属于聚类分析的研究范围。这里我们为了示例,假装不知道样本的分类情况(既不知道类数也不知道每一个观测属于的类别),让SAS取进行聚类分析,为了进行谱系聚类并产生帮助确定类数的统计量,使用如下过程:

部分结果如下:

这个输出列出了把150个观测每次合并两类,共合并149次的过程。NCL列指定了聚类水平G(即这一步存在的单独的类数)。"-Clusters Joined-"为两列,指明这一步合并了哪两个类。其中OBxxx表示哪一个原始观测,而CLxxx表示在哪一个聚类水平上产生的类。比如,NCL为149时合并的是OB16和OB76,即16号观测和76号观测,NCL为1合并的是CL5和CL2,即类水平为5时得到的类和类水平为2时得到的类, FREQ表示这次合并得到的类有多少个观测。SPRSQ是半偏R2,RSQ是R2,ERSQ是在均匀零假设下的R2的近似期望值,CCC为CCC统计量,PSF为伪F统计量,PST2为伪t2统计量,Tie指示距离最小的候选类对是否有多对。
假设我们知道要分成3类,所以我们用如下的TREE过程绘制树图并产生分类结果数据集:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23