
大数据时代的知识_数据分析师培训
进入网络大数据时代之后,海量的知识顿时如潮水涌现,令人眼花缭乱。到底哪些是真知识,并且是有用的知识?现在成了一个难题。如果在大数据时代善于将知识有效利用,这也是不错的时代,可惜并非所有人都是如此。《知识的边界》([美]戴维·温伯格著, 胡泳、高美译,山西人民出版社)这本书,就是围绕“大数据时代的知识”一系列问题展开了深层次的探讨和反思。
本书作者戴维·温伯格是哈佛大学资深研究员,围绕网络社会与知识创新等热点话题,经常为美国《连线》《纽约时报》《哈佛商业评论》等报刊撰稿。《知识的边界》一书共分为“知识超载”“深不可测的知识海洋”“长形式,网形式”等九个篇章。每一篇章中,温伯格对于“大数据时代的知识”进行了不同层面、不同维度的分析和梳理。大数据时代的知识是较之印刷时代的知识而言的,印刷时代的知识是静态、单向度、线性的传播方式;而大数据时代的知识则恰恰相反,美国云计算之父马克·贝尼奥夫认为,大数据时代的知识具有社交性、流动性、开放性的特征。而温伯格则在书中一语中的:“大数据时代的知识没有边界、也没有形状。”
大数据时代的知识,没有像印刷时代对知识结构视为必须具备的“基础”,知识是非线性的,可以自由组合、切割,处于一种游离状态,有点“召之即来,来之可取”的意味。温伯格在书中,对一系列基本概念提出了批判性的思考。比如,他在阐发“事实”的概念时,认为人类社会只有到了十九世纪,“事实”才成为知识的基础和解决争论的最终方法。他写道:“但我们应该意识到,那个时期对事实的看法,并非基于事实而是基于发表事实的纸质媒体。”今天大数据时代所提供的“事实”,远远超出了传统书籍的范围, “事实”充满林林总总的分歧和争论。
大数据时代的知识,如同一张无限扩展的大网,将人类所有知识“一网打尽”。而在先前的印刷时代,知识主要依靠出版,少数的知识精英把持知识的传播特权;网络新媒体开启的大数据时代,则是一场更为深远的知识颠覆性变革,知识传播呈几何级数式增长。当前,网络新媒体技术打破了精英与平民之间的知识壁垒,改变了自上而下的知识传播模式,使知识的生产与传播陷入不确定的状态。
温伯格对于大数据时代的知识秉持乐观的态度。从客观上看,大数据时代的知识学习,确实有其便捷性,这是不争的事实。
如果说大数据时代的知识给人带来便捷,那么拓展人们的知识视野,则更有不可替代的优势。2011年以来,一种名为“慕课”(在线学习网络)的学习方式,给知识的学习与传播带来划时代的“革命”。“慕课”的周围,聚集着全球各地的青年学生,他们各自在家中的电脑前,在线聆听老师授课。老师在授课中学生可以随时提问,课后师生之间可以进行互动性的交流,老师在线批改作业,进行课业点评。这种学习知识的新方式,令人们毫无时空的阻隔感。“立体式”的知识传播,使得传统的课堂受到严峻挑战。现在有专家认为,“慕课”猛于虎,那些讲课不精彩、专业基础不扎实的教师,将来在“慕课”的浪潮中面临职业危机。
这里不得不提,大数据时代的知识便捷性只是相对而言。假如高度依赖网络数据进行学术研究或者文学创作,笔者有着隐隐的担忧:因为学者、作家使用数据库后,省略了在稿纸上的“各种比划”,思考中的各种揣摩、猜疑和最初的灵感火花,无法原汁原味地留存。众所周知,学术研究或者文学创作过程中那些潦草、凌乱的文稿笔迹,是知识的半成品,具备极高的研究价值。大数据时代将大脑思索的过程轻而易举地抹掉,应该引起足够的关注。
大数据时代的知识能轻松获得,也并不意味着就能真正掌握知识。大数据时代的知识仅仅是一种资源,好比家中存放成百上千的书籍,如果不去研读,知识和人依然无关。不管处于怎样的一种时代,知识需要人们花苦功夫钻研,否则再多的知识也无意义。另外,现在不少人,凡是有不懂的问题,习惯性地上网搜索,不做任何甄别地将网上的知识和答案奉为宝典。长此以往,久而久之会使大脑变得懒惰,思维变得迟钝。大数据时代的知识,究竟是令人变得聪明还是愚笨?
《知识的边界》一书的魅力,在于它所呈现的思辨层面的丰富性,以及从无数具体的论争、微小的案例出发,对知识本身的学习、生产、传播、知识内部要素以及知识的外部影响,进行了层层深入、环环相扣的论述。在很多看上去不是问题的问题的追问中,温伯格表现出深厚的知识思辨能力,这是极为难得的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07