京公网安备 11010802034615号
经营许可证编号:京B2-20210330
抓住大数据与数字营销碰撞出的新机遇_数据分析师培训
数字营销行业对大数据从不陌生,作为目前国内最大的营销数据技术公司,AdMaster(精硕科技)更是数据管理的行家里手--每秒钟,他们的广告数据监测工具TrackMaster都在为超过1500家广告主监测着来自1000多个媒体源的数万次广告曝光,每天新增的日均负载就达百亿级别以上。
过去,为了给客户提供优质的体验,AdMaster每年都要投入大量的成本用于采购服务器。但传统的物理服务器资源不仅缺乏弹性,在数据处理上受到的局限也比较多,业务高峰期常遇到计算资源不足的情况,难以及时保证客户的数据处理需求。此外,按照传统方法在本地安装、部署计算资源和应用常常需要IT部门忙碌数周的时间,而时间,无论对于AdMaster还是广告主来说,都是分秒必争的宝贵资源。
面对互联网时代的新一轮大数据狂潮,厌倦了被数据追赶的AdMaster决定通过选择云服务,来彻底摆脱硬件无限扩张,运营、维护成本不断增加的怪圈,将精力集中到真正核心业务上来。作为第一个在国内正式商用的公有云,微软云Azure成为AdMaster的首选云平台。灵活扩容、按需使用的弹性极大压缩了AdMaster在软硬件基础设施上的投入,而Azure提供的基于Hadoop分布计算的HDInsight分析工具,更为大量不同类型、非结构化和社交数据的即时分析提供了强有力的技术保证。
在数字营销领域,被云计算与大数据的光明前景吸引的不仅是AdMaster,国内领先的公交户外传媒品牌百灵时代也在积极拥抱微软云,抢先部署云计算与大数据的战略格局。
百灵时代在国内很多大城市拥有丰富的机场、影院、地铁、巴士、户外广告资源,在传统广告传播上经验丰富。随着移动互联网的新奇和人们触媒习惯的不断进化,如何更准确地锁定目标人群,有的放矢地传达出量身定制的营销信息,是百灵时代给自己提出的课题。
要对不断变化、流动的人群特征进行筛选,对受众的行为习惯进行精准分析,就需要对相关数据进行采集、分析、跟踪,并从中得到有用的市场洞察,来指导接下来的市场营销活动。庞大的数据量和多样化的数据类型对数据处理提出了高要求,而百灵时代,在与微软云合作之后,得以轻装上阵,将繁杂的数据处理交给Azure来完成。
现在,百灵时代能充分利用微软云提供的成熟技术和运行环境来开发和运行应用及解决方案,高效地实现大数据处理,并更加精准地指导营销和广告投放。微软云Azure的伸缩性更是帮助百灵时代按需调整IT资源控制企业IT成本,当并行访问量突然增加时,可以实现自动横向扩展,提升服务质量;待访问量处于低谷期时,又能根据需要自动收缩,降低运营成本。
与AdMaster和百灵时代不同,深圳的杰尼思科技公司的业务场景和需求更加复杂,在市场营销和大数据的基础上,还加入了多媒体直播、网络互动等更多层次的需求。2014年8月,深圳杰尼思科技承接了一场演唱会的线上直播任务,但与以往不同的是,除了现场影音,他们还要在直播中加入互动信息,希望能通过演唱会的直播带动明星周边产品的销售--而这其中就涉及到了超大数据量的传输、筛选和处理。
事实证明,与微软云的合作,最终成为这个项目快速落地、成功实施的关键。Azure承担了整个直播互动的全部后台运营工作,快速搭建视频直播的数据中心保障了直播项目的正常运行。微软的云技术专家,深入了解用户需求,快速解决了技术移植、平台对接、数据传输上的一系列难题。最终,Azure的PaaS级媒体服务快速完成视频直播后台的搭建,同时Azure的大数据工具帮助收集和反馈了用户对相关产品的反馈,帮助锁定了核心购买人群。
微软云Azure不但能提供灵活拓展、可靠安全的云服务,更为数字营销行业的关键业务提供了强大的数据收集、筛选、分析服务和有力保障,特别是HDInsight等大数据工具,能更好地帮助企业挖掘大数据中隐藏的价值,以更加精确、高效、直观的数据洞察实现数字时代的精准营销。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22